Skip to content

Commit

Permalink
let's get rid of this
Browse files Browse the repository at this point in the history
  • Loading branch information
riccardobrasca committed Jul 5, 2024
1 parent 2f9431b commit ef78720
Show file tree
Hide file tree
Showing 2 changed files with 3 additions and 12 deletions.
7 changes: 3 additions & 4 deletions FltRegular/NumberTheory/Cyclotomic/MoreLemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -87,11 +87,10 @@ lemma isCoprime_of_not_zeta_sub_one_dvd (hx : ¬ (hζ.unit' : 𝓞 K) - 1 ∣ x)
Ideal.mem_span_singleton]
· simpa only [ge_iff_le, tsub_pos_iff_lt] using hpri.out.one_lt

set_option synthInstance.maxHeartbeats 80000 in
lemma exists_zeta_sub_one_dvd_sub_Int (a : 𝓞 K) : ∃ b : ℤ, (hζ.unit' - 1: 𝓞 K) ∣ a - b := by
letI : AddGroup (𝓞 K ⧸ Ideal.span (singleton (hζ.unit' - 1: 𝓞 K))) := inferInstance
lemma exists_zeta_sub_one_dvd_sub_Int (a : 𝓞 K) : ∃ b : ℤ, (hζ.unit' - 1 : 𝓞 K) ∣ a - b := by
letI : Fact (Nat.Prime p) := hpri
simp_rw [← Ideal.Quotient.eq_zero_iff_dvd, map_sub, sub_eq_zero, ← SModEq.Ideal_def]
simp_rw [← Ideal.Quotient.eq_zero_iff_dvd, ← Ideal.Quotient.mk_eq_mk, Submodule.Quotient.mk_sub,
sub_eq_zero, ← SModEq.def]
convert exists_int_sModEq hζ.subOneIntegralPowerBasis' a
rw [hζ.subOneIntegralPowerBasis'_gen]
rw [Subtype.ext_iff, AddSubgroupClass.coe_sub, IsPrimitiveRoot.val_unit'_coe, OneMemClass.coe_one]
Expand Down
8 changes: 0 additions & 8 deletions FltRegular/ReadyForMathlib/PowerBasis.lean
Original file line number Diff line number Diff line change
Expand Up @@ -39,11 +39,3 @@ theorem exists_int_sModEq (x : 𝓞 K) :
rw [SModEq.sub_mem, mul_one, add_sub_cancel_left, mul_comm, mem_span_singleton']
exact ⟨_, rfl⟩
· exact not_mem_erase (⟨0, pb.dim_pos⟩ : Fin pb.dim) univ

variable [NumberField K] {pb}

variable (hpr : Prime (norm ℚ pb.gen))

lemma SModEq.Ideal_def {R : Type*} [CommRing R] (I : Ideal R) (x y : R) :
x ≡ y [SMOD I] ↔ Ideal.Quotient.mk I x = Ideal.Quotient.mk I y :=
Iff.rfl

0 comments on commit ef78720

Please sign in to comment.