Skip to content

Simultaneous prediction of interaction sites on both protein and peptide sides of complexes through multi-layer graph convolutional networks

Notifications You must be signed in to change notification settings

lennylv/GraphPPepIS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 

Repository files navigation

GraphPPepIS

############################################################################

The source code, training and test datasets of paper 'Simultaneous prediction of interaction sites on both protein and peptide sides of complexes through multi-layer graph convolutional networks'

############################################################################

Install dependency:

  • conda create -n ppis python==3.7.10 -y

  • conda activate ppis

  • pip install Bio

Prerequisites:

  • python: 3.7.10

  • CUDA: 10.1

  • pytorch: 1.2.0

All relevant inputs:

Due to the limitation of Github, some inputs larger than 25MB are not uploaded. Please contact me directly at [email protected].

############################################################################

Reproduce experimental results:

(settrain: Train4094, settest: Test169, settest2: Test53)

Test our model GraphPPepIS

Step 1: cd code

Step 2: python predict_graph.py

Test our model SeqPPepIS

Step 1: cd code

Step 2: python predict_seq.py

Train your own model GraphPPepIS

Step 1: cd code

Step 2: python train_graph.py --layers 8 --units 512 --epochs 300 --pw 0.8 --lw 0.1

Train your own model SeqPPepIS

Step 1: cd code

Step 2: python train_seq.py --layers 8 --units 512 --epochs 300 --pw 0.8 --lw 1.0

About

Simultaneous prediction of interaction sites on both protein and peptide sides of complexes through multi-layer graph convolutional networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages