Before training the model, register input images to corresponding target images and ensure files are arranged in the following format:
├── Training_data
| ├── images
| | ├── 0.nii
| | ├── 1.nii
| | └── 2.nii
| ├── labels
| | ├── 0.nii
| | ├── 1.nii
| | └── 2.nii
Modify "BaseOptions.py" to set directory for preprocessed training data (--data path) and validation data (--val_path). Select model that will be used for training by modifying --model (e.g. gambas, cycle_gan, pix2pix) and make sure correct patch size is specified via --patch size. Finally, set checkpoint directory (--checkpoints_dir) and project name (--name).
For standard training script use train.py, however to make sure TensorBoard log is created, use train_TB.py