Dataset and code for generating the dataset described in the paper FMARS: Annotating Remote Sensing Images for Disaster Management using Foundation Models.
Note: The dataset is available at Hugging Face Datasets.
We recommend using Python version 3.10.12 for this project. Set up a new virtual environment using the following commands:
pyenv install 3.10.12
pyenv global 3.10.12
python -m venv .venv
source .venv/bin/activate
Install the required Python packages with:
pip install -r requirements.txt
Download necessary metadata using:
wget -q https://github.com/links-ads/igarss-fmars-gen/releases/download/v0.1.0/metadata.zip
unzip metadata.zip
rm metadata.zip
Download the model weights for Grounding DINO and EfficientSAM:
- Grounding DINO:
cd models/GDINO/weights
wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
cd ../../..
- EfficientSAM:
Download the checkpoint from this link and place it in
models/efficientSAM/weights/
.
- Maxar Images:
python src/maxarseg/scripts/downloadMaxar.py
- Microsoft Road Detections:
python src/maxarseg/scripts/downloadRoads.py
You can run the automatic labelling process on a whole event or on a partition of an event using a single command. The event is specified by its index, which can be an integer for a whole event or a decimal for a partition.
python -B -O -m maxarseg --out_dir_root <path/to/output/directory> \
--config "<path/to/config/file>" \
--event_ix <event_index>
--out_dir_root
: Specifies the output directory for the labelling results.
--config
: Path to the configuration file (e.g., "./configs/trees_cfg.yaml").
--event_ix
: Index of the event to process.
- Use an integer (e.g., 0, 1, 2) to process a whole event.
- Use a decimal from x.0 to x.9 (e.g., 0.0, 0.1, ..., 0.9) to process a partition of an event.
FMARS leverages several open-source projects. We extend our gratitude to the authors of the following tools for making their software publicly available: