-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
1,163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
function history= ITISCFunction(filename) | ||
load(filename,'initCenters','data','T1','T2','outputFile') | ||
x0=initCenters; | ||
history.x = []; | ||
history.fval = []; | ||
disp('Init center is'); | ||
disp(x0) | ||
|
||
options = optimoptions(@fminunc,'OutputFcn',@outfun,'Display','iter','Algorithm','quasi-newton','HessianApproximation','bfgs'); | ||
[xsol,fval,exitflag,output] = fminunc(@objfun,x0,options) | ||
function stop = outfun(x,optimValues,state) | ||
stop = false; | ||
switch state | ||
case 'iter' | ||
history.fval = [history.fval; optimValues.fval]; | ||
history.x = cat(3,history.x, x); | ||
otherwise | ||
end | ||
end | ||
|
||
function f = objfun(x) | ||
f =T2.*log(sum(sum((pdist2(data, x).^2).^(-1/T1),2).^(-T1/T2))); | ||
end | ||
|
||
historyCenters = permute(history.x,[3 1 2]); | ||
save(outputFile,"historyCenters","exitflag") | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,278 @@ | ||
# ITISC Alternative Optimization algorithm | ||
import math | ||
import random | ||
import numpy as np | ||
from scipy.linalg import norm | ||
from scipy.spatial.distance import cdist # l2: default | ||
from math import sqrt | ||
import matplotlib.pyplot as plt | ||
import imageio | ||
|
||
class ITISC_AO: | ||
def __init__(self, args, initCenters=None): | ||
self.T1 = args.T1 | ||
self.T2 = args.T2 | ||
self.max_iter = args.max_iter | ||
assert self.T1 > 0 | ||
assert self.T2 > 0 | ||
self.T2_list = [] | ||
self.u, self.centers = None, None | ||
self.n_clusters = args.C | ||
self.max_iter = args.max_iter | ||
self.error = args.error | ||
self.itisc_random_state = args.itisc_random_state | ||
self.args = args | ||
|
||
# intermediate step | ||
self.all_W = [] | ||
self.all_centers = [] | ||
self.all_pred = [] | ||
self.convergeOrNot = None | ||
|
||
# save gif | ||
self.gif = args.gif | ||
self.gif_gap = args.gif_gap | ||
self.prob = args.prob | ||
self.image_list = [] | ||
self.initCenters = initCenters | ||
self.init_method = args.init_method | ||
self.plot_boundary = args.plot_boundary # isoprobability curve | ||
|
||
def fit(self, X): | ||
self.n_samples = X.shape[0] | ||
self.r = np.random.RandomState(self.itisc_random_state) | ||
self.U = self.r.rand(self.n_samples,self.n_clusters) | ||
self.U = self.U / np.tile(self.U.sum(axis=1)[np.newaxis].T, self.n_clusters) | ||
self.W = self.r.rand(self.n_samples,1) | ||
self.W = self.W / np.sum(self.W) # normalize | ||
self.all_W = [self.W] | ||
|
||
for iteration in range(self.max_iter): | ||
if iteration == 0: | ||
self.centers = self.init_centers(X) | ||
self.all_centers = [self.centers] | ||
|
||
U_old = self.U.copy() | ||
centers_old = self.centers.copy() | ||
self.U = self.next_u(X) | ||
|
||
self.W = self.next_w(X) | ||
self.all_W = self.all_W + [self.W] | ||
|
||
self.centers = self.next_centers(X, iteration) | ||
self.all_centers = self.all_centers + [self.centers] | ||
self.all_pred = self.all_pred + [self.predict(X)] | ||
# Stopping rule | ||
if not np.isnan(self.centers).any(): | ||
# if norm(self.U - U_old) < self.error: | ||
if norm(self.centers - centers_old) < self.error: # same as ITISC_R | ||
print('Centers Y not changed, Break iteration={}'.format(iteration)) | ||
break | ||
else: | ||
print('Centers Y contains nan value, break at iteration={}'.format(iteration)) | ||
break | ||
|
||
## save intermediate step | ||
if self.gif: | ||
if iteration % self.gif_gap == 0: | ||
image, fig= self.get_gif(X, iteration, plot_boundary=self.plot_boundary) | ||
fig.clf() | ||
self.image_list = self.image_list + [image] | ||
if self.gif: | ||
imageio.mimsave('./gif/ITISC_AO_T1={}_T2={}.gif'.format(self.T1, self.T2), self.image_list, fps=1) | ||
|
||
print('ITISC_AO break at iteration:{}, T1={:.2f}, T2={:.2f}'.format(iteration, self.T1, self.T2)) | ||
print('iteration={}, centers_diff={}'.format(iteration, norm(self.centers - centers_old))) | ||
print('center norm={}'.format(norm(self.centers - centers_old))) | ||
self.convergeOrNot = norm(self.centers - centers_old) < self.error | ||
print('The ITISC_AO algorithm converge={}'.format(self.convergeOrNot)) | ||
return self.T1, self.T2, self.convergeOrNot | ||
|
||
def init_centers(self, X): | ||
# provided init Centers: may come from another clustering algorithm | ||
if not self.initCenters is None: | ||
initCenters = self.initCenters | ||
elif self.init_method == 'random': # random initialization from data range | ||
random.seed(self.args.itisc_random_state) | ||
xmax = np.max(X, axis=0) | ||
xmin = np.min(X, axis=0) | ||
initCenters = [] | ||
for c in range(self.n_clusters): | ||
tmp = [random.uniform(tmp_min, tmp_max) for tmp_min, tmp_max in zip(xmin, xmax)] | ||
initCenters.append(tmp) | ||
initCenters = np.array(initCenters) | ||
elif self.init_method == 'kmeans': | ||
from sklearn.cluster import KMeans | ||
kmeans = KMeans(n_clusters=self.n_clusters, random_state=self.args.random_state).fit(X) | ||
initCenters = kmeans.cluster_centers_ | ||
elif self.init_method == 'fcm': | ||
from fcm_github import FCM | ||
fcm = FCM(self.args) | ||
fcm.fit(X) | ||
initCenters = fcm.centers | ||
else: | ||
exit('Unrecognized init center method') | ||
return initCenters | ||
|
||
def next_centers(self, X, iteration): | ||
# based on updated u_{ij} and w_{i} | ||
# xi: observation | ||
# yj: current center | ||
# i : index for observation,total N | ||
# j : index for center,total C | ||
# U : [N,C] # numerator:[N,C] denominator:[N,1] --> update u_{ij} (公式1) | ||
# W : [N,1] # numerator:[N,1] denominator:[1,1] --> update w_{i} (公式2) | ||
# X: [N,R] # R: feature dimension | ||
W = self.W ** (1-self.T2) | ||
U = self.U ** (1+self.T1) | ||
D = cdist(X, self.centers)**2 # [N,C] | ||
|
||
### xi overlap with cluster center | ||
if 0 in D: | ||
zero_ind = np.argwhere(D==0) | ||
W = np.delete(W, zero_ind[:,0], axis=0) | ||
U = np.delete(U, zero_ind[:,0], axis=0) | ||
D = np.delete(D, zero_ind[:,0], axis=0) | ||
X = np.delete(X, zero_ind[:,0], axis=0) | ||
print('Updating centers, center and data overlap, len={}'.format(len(zero_ind))) | ||
|
||
denom = (U.T) @ W # [C,N] * [N,1] --> [C,1] | ||
W = W.repeat(X.shape[-1], axis=1) # [N,1] --> [N,R] | ||
numer = (U.T) @ (W * X) # [C,N] * [N,R] --> [C,R] | ||
|
||
new_center = numer / denom | ||
return new_center | ||
|
||
def next_u(self, X): | ||
alpha = 1/self.T1 | ||
temp = cdist(X, self.centers)**2 # [400,3] --> [400,1,3] -->[400,3,3] | ||
|
||
if 0 in temp: | ||
zero_ind_exists = True | ||
zero_ind = np.argwhere(temp == 0) | ||
print('Updating U, center and data overlap, len={}'.format(len(zero_ind))) | ||
for ind in zero_ind: | ||
temp[ind[0], ind[1]] = 1 | ||
else: | ||
zero_ind_exists = False | ||
|
||
denominator = temp.reshape((X.shape[0], 1, -1)).repeat(temp.shape[-1], axis=1) | ||
denominator = temp[:, :, np.newaxis] / denominator # [400,3,1]/[400,3,3] --> [400,3,3] | ||
denominator = denominator ** alpha | ||
res = 1/denominator.sum(2) | ||
if zero_ind_exists: | ||
for ind in zero_ind: | ||
res[ind[0], ...] = 0 | ||
res[ind[0],ind[1]] = 1 | ||
return res | ||
|
||
## Trick from FCM for stable computation: put numer to denom | ||
def next_w(self, X): | ||
# based on updated u_{ij} and w_{i} | ||
# xi: observation | ||
# yj: current center | ||
# i : index for observation,total N | ||
# j : index for center,total C | ||
# U : [N,C] # numerator:[N,C] denominator:[N,1] --> update u_{ij} (公式1) | ||
# W : [N,1] # numerator:[N,1] denominator:[1,1] --> update w_{i} (公式2) | ||
# X: [N,R] # R: feature dimension | ||
alpha = -1 / self.T1 | ||
beta = self.T1 / self.T2 | ||
temp = cdist(X, self.centers)**2 | ||
|
||
if 0 in temp: | ||
zero_ind_exists = True | ||
zero_ind = np.argwhere(temp == 0) | ||
print('Updating W, center and data overlap, len={}'.format(len(zero_ind))) | ||
for ind in zero_ind: | ||
temp[ind[0], ind[1]] = 1 | ||
else: | ||
zero_ind_exists = False | ||
|
||
temp = temp ** alpha | ||
temp = np.sum(temp, axis=1) # [N,C] | ||
denom = temp.reshape((X.shape[0], -1)).repeat(temp.shape[0], axis=1) | ||
res = (temp / denom) ** beta | ||
res = 1 / np.sum(res, axis=0) | ||
|
||
if zero_ind_exists: | ||
for ind in zero_ind: | ||
res[ind[0], ...] = 0 | ||
return res[:,np.newaxis] | ||
|
||
# predict: original data | ||
def predict(self, X): | ||
if len(X.shape) == 1: | ||
X = np.expand_dims(X, axis=0) | ||
|
||
U = self.next_u(X) | ||
return np.argmax(U, axis=-1) | ||
|
||
# predict: new data | ||
def predict_new(self, X): | ||
if len(X.shape) == 1: | ||
X = np.expand_dims(X, axis=0) | ||
return self.next_u(X) | ||
|
||
def get_U(self): | ||
return self.U | ||
|
||
def get_W(self): | ||
return self.W | ||
|
||
def get_gif(self, X, iter, plot_boundary=False): | ||
fig, ax = plt.subplots(1,1, figsize=(8,8)) | ||
colors_tmp = ['g', 'r', 'b', 'c', 'm', 'k','y','cyan','pink','gray'] | ||
point_size = 3 | ||
alpha = 0.8 | ||
color_tmp = colors_tmp[:self.n_clusters] | ||
pred = self.predict(X) | ||
|
||
if plot_boundary: | ||
rtol = 1e-2 | ||
mesh_grid_pred = get_meshgrid(X) | ||
mesh_grid_U_pred = self.predict_new(mesh_grid_pred) | ||
cls_ind_list = [] | ||
for ind in range(self.n_clusters): | ||
cls_ind_tmp = get_boundary_index(mesh_grid_U_pred, ind, self.prob, rtol=rtol) | ||
cls_ind_list = cls_ind_list + [cls_ind_tmp] | ||
|
||
ax.plot(self.centers[:,0], self.centers[:,1], "*" , markersize = 10, c = 'blue') | ||
|
||
for ind in range(self.n_clusters): | ||
ax.scatter(X[pred==ind,0], X[pred==ind,1], s=5, alpha=0.5, c=colors_tmp[ind]) | ||
if plot_boundary: | ||
ax.scatter(mesh_grid_pred[cls_ind_list[ind],0],mesh_grid_pred[cls_ind_list[ind],1], c = colors_tmp[ind], s=point_size, alpha=alpha) | ||
|
||
ax.set_title('iter={}, T1={:.2f}, T2={:.2f}'.format(iter, self.T1, self.T2)) | ||
fig.canvas.draw() | ||
image = np.frombuffer(fig.canvas.tostring_rgb(), dtype='uint8') | ||
image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | ||
return image, fig | ||
|
||
|
||
if __name__ == '__main__': | ||
from hyperparam import args | ||
from utility_code import get_data, generate_data_ind, get_meshgrid, get_boundary_index | ||
|
||
# data | ||
args.T2 = 0.7 | ||
args.C = 3 | ||
args.R = 1 | ||
args = get_data(args) | ||
data, labels, true_centers, data_mean, dataDistDesInd = generate_data_ind(args) | ||
|
||
# model | ||
model = ITISC_AO(args) | ||
model.fit(data) | ||
centers = model.centers | ||
pred = model.predict(data) | ||
print('centers\n', centers) | ||
|
||
if not args.gif: | ||
plt.scatter(data[:,0],data[:,1], c=pred, s=10) | ||
plt.scatter(centers[:,0],centers[:,1], c='k', s=30) | ||
plt.show() | ||
|
||
|
||
|
Oops, something went wrong.