-
Notifications
You must be signed in to change notification settings - Fork 107
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #86 from sleighsoft/spearmanr
Added spearmanr
- Loading branch information
Showing
4 changed files
with
207 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -81,6 +81,7 @@ distance metrics by default: | |
|
||
- cosine | ||
- correlation | ||
- spearmanr | ||
|
||
**Metrics for binary data** | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
import numpy as np | ||
from numpy.testing import assert_equal, assert_array_equal | ||
|
||
from pynndescent.distances import rankdata | ||
|
||
|
||
def test_empty(): | ||
"""rankdata([]) should return an empty array.""" | ||
a = np.array([], dtype=int) | ||
r = rankdata(a) | ||
assert_array_equal(r, np.array([], dtype=np.float64)) | ||
|
||
|
||
def test_one(): | ||
"""Check rankdata with an array of length 1.""" | ||
data = [100] | ||
a = np.array(data, dtype=int) | ||
r = rankdata(a) | ||
assert_array_equal(r, np.array([1.0], dtype=np.float64)) | ||
|
||
|
||
def test_basic(): | ||
"""Basic tests of rankdata.""" | ||
data = [100, 10, 50] | ||
expected = np.array([3.0, 1.0, 2.0], dtype=np.float64) | ||
a = np.array(data, dtype=int) | ||
r = rankdata(a) | ||
assert_array_equal(r, expected) | ||
|
||
data = [40, 10, 30, 10, 50] | ||
expected = np.array([4.0, 1.5, 3.0, 1.5, 5.0], dtype=np.float64) | ||
a = np.array(data, dtype=int) | ||
r = rankdata(a) | ||
assert_array_equal(r, expected) | ||
|
||
data = [20, 20, 20, 10, 10, 10] | ||
expected = np.array([5.0, 5.0, 5.0, 2.0, 2.0, 2.0], dtype=np.float64) | ||
a = np.array(data, dtype=int) | ||
r = rankdata(a) | ||
assert_array_equal(r, expected) | ||
# The docstring states explicitly that the argument is flattened. | ||
a2d = a.reshape(2, 3) | ||
r = rankdata(a2d) | ||
assert_array_equal(r, expected) | ||
|
||
|
||
def test_rankdata_object_string(): | ||
min_rank = lambda a: [1 + sum(i < j for i in a) for j in a] | ||
max_rank = lambda a: [sum(i <= j for i in a) for j in a] | ||
ordinal_rank = lambda a: min_rank([(x, i) for i, x in enumerate(a)]) | ||
|
||
def average_rank(a): | ||
return np.array([(i + j) / 2.0 for i, j in zip(min_rank(a), max_rank(a))]) | ||
|
||
def dense_rank(a): | ||
b = np.unique(a) | ||
return np.array([1 + sum(i < j for i in b) for j in a]) | ||
|
||
rankf = dict( | ||
min=min_rank, | ||
max=max_rank, | ||
ordinal=ordinal_rank, | ||
average=average_rank, | ||
dense=dense_rank, | ||
) | ||
|
||
def check_ranks(a): | ||
for method in "min", "max", "dense", "ordinal", "average": | ||
out = rankdata(a, method=method) | ||
assert_array_equal(out, rankf[method](a)) | ||
|
||
check_ranks(np.random.uniform(size=[200])) | ||
|
||
|
||
def test_large_int(): | ||
data = np.array([2 ** 60, 2 ** 60 + 1], dtype=np.uint64) | ||
r = rankdata(data) | ||
assert_array_equal(r, [1.0, 2.0]) | ||
|
||
data = np.array([2 ** 60, 2 ** 60 + 1], dtype=np.int64) | ||
r = rankdata(data) | ||
assert_array_equal(r, [1.0, 2.0]) | ||
|
||
data = np.array([2 ** 60, -2 ** 60 + 1], dtype=np.int64) | ||
r = rankdata(data) | ||
assert_array_equal(r, [2.0, 1.0]) | ||
|
||
|
||
def test_big_tie(): | ||
for n in [10000, 100000, 1000000]: | ||
data = np.ones(n, dtype=int) | ||
r = rankdata(data) | ||
expected_rank = 0.5 * (n + 1) | ||
assert_array_equal(r, expected_rank * data, "test failed with n=%d" % n) | ||
|
||
|
||
# fmt: off | ||
_cases = ( | ||
# values, method, expected | ||
(np.array([], np.float64), 'average', np.array([], np.float64)), | ||
(np.array([], np.float64), 'min', np.array([], np.float64)), | ||
(np.array([], np.float64), 'max', np.array([], np.float64)), | ||
(np.array([], np.float64), 'dense', np.array([], np.float64)), | ||
(np.array([], np.float64), 'ordinal', np.array([], np.float64)), | ||
# | ||
(np.array([100], np.float64), 'average', np.array([1.0], np.float64)), | ||
(np.array([100], np.float64), 'min', np.array([1.0], np.float64)), | ||
(np.array([100], np.float64), 'max', np.array([1.0], np.float64)), | ||
(np.array([100], np.float64), 'dense', np.array([1.0], np.float64)), | ||
(np.array([100], np.float64), 'ordinal', np.array([1.0], np.float64)), | ||
# # | ||
(np.array([100, 100, 100], np.float64), 'average', np.array([2.0, 2.0, 2.0], np.float64)), | ||
(np.array([100, 100, 100], np.float64), 'min', np.array([1.0, 1.0, 1.0], np.float64)), | ||
(np.array([100, 100, 100], np.float64), 'max', np.array([3.0, 3.0, 3.0], np.float64)), | ||
(np.array([100, 100, 100], np.float64), 'dense', np.array([1.0, 1.0, 1.0], np.float64)), | ||
(np.array([100, 100, 100], np.float64), 'ordinal', np.array([1.0, 2.0, 3.0], np.float64)), | ||
# | ||
(np.array([100, 300, 200], np.float64), 'average', np.array([1.0, 3.0, 2.0], np.float64)), | ||
(np.array([100, 300, 200], np.float64), 'min', np.array([1.0, 3.0, 2.0], np.float64)), | ||
(np.array([100, 300, 200], np.float64), 'max', np.array([1.0, 3.0, 2.0], np.float64)), | ||
(np.array([100, 300, 200], np.float64), 'dense', np.array([1.0, 3.0, 2.0], np.float64)), | ||
(np.array([100, 300, 200], np.float64), 'ordinal', np.array([1.0, 3.0, 2.0], np.float64)), | ||
# | ||
(np.array([100, 200, 300, 200], np.float64), 'average', np.array([1.0, 2.5, 4.0, 2.5], np.float64)), | ||
(np.array([100, 200, 300, 200], np.float64), 'min', np.array([1.0, 2.0, 4.0, 2.0], np.float64)), | ||
(np.array([100, 200, 300, 200], np.float64), 'max', np.array([1.0, 3.0, 4.0, 3.0], np.float64)), | ||
(np.array([100, 200, 300, 200], np.float64), 'dense', np.array([1.0, 2.0, 3.0, 2.0], np.float64)), | ||
(np.array([100, 200, 300, 200], np.float64), 'ordinal', np.array([1.0, 2.0, 4.0, 3.0], np.float64)), | ||
# | ||
(np.array([100, 200, 300, 200, 100], np.float64), 'average', np.array([1.5, 3.5, 5.0, 3.5, 1.5], np.float64)), | ||
(np.array([100, 200, 300, 200, 100], np.float64), 'min', np.array([1.0, 3.0, 5.0, 3.0, 1.0], np.float64)), | ||
(np.array([100, 200, 300, 200, 100], np.float64), 'max', np.array([2.0, 4.0, 5.0, 4.0, 2.0], np.float64)), | ||
(np.array([100, 200, 300, 200, 100], np.float64), 'dense', np.array([1.0, 2.0, 3.0, 2.0, 1.0], np.float64)), | ||
(np.array([100, 200, 300, 200, 100], np.float64), 'ordinal', np.array([1.0, 3.0, 5.0, 4.0, 2.0], np.float64)), | ||
# | ||
(np.array([10] * 30, np.float64), 'ordinal', np.arange(1.0, 31.0, dtype=np.float64)), | ||
) | ||
# fmt: on | ||
|
||
|
||
def test_cases(): | ||
for values, method, expected in _cases: | ||
r = rankdata(values, method=method) | ||
assert_array_equal(r, expected) |