The radar full velocity is estimated by using Doppler velocity and optical flow, which can be computed with (a) a previous image or (b) the next image.
data/
nuscenes/
annotations/
maps/
samples/
sweeps/
v1.0-trainval/
lib/
scripts/
external/
RAFT/
- Create a conda environment called pda
conda create -n pda python=3.6
- Install required packages
pip install -r requirements.txt
- Download nuScenes dataset (Full dataset (v1.0) Trainval) into data/nuscenes/
- Clone external repos RAFT into external/
1. Data preparation
cd scripts
# 1) split data
python split_data.py
# 2) extract images for flow computation
python prepare_flow_im.py
# 3) compute image flow
python cal_flow.py
# 4) transform image flow to normalized expression (u2,v2)
python cal_im_flow2uv.py
# 5) create .h5 dataset file
python gen_h5_file3.py
2. Estimate radar-camera association
python train_association.py # train
python test_association.py # demo
Download pre-trained weights
3. Predict radar full velocity
# 1) generate offsets of radar projections based on associations
python test_association.py --gen_offset
# 2) demo of full velocity prediction
python prd_full_v.py
# 3) evaluation of point-wise velocity
python pt_wise_error.py
@InProceedings{Long_2021_ICCV,
author = {Long, Yunfei and Morris, Daniel and Liu, Xiaoming and Castro, Marcos and Chakravarty, Punarjay and Narayanan, Praveen},
title = {Full-Velocity Radar Returns by Radar-Camera Fusion},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
month = {October},
year = {2021}
}