Skip to content

longyunf/radar-full-velocity

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Full-Velocity Radar Returns by Radar-Camera Fusion

example figure The radar full velocity is estimated by using Doppler velocity and optical flow, which can be computed with (a) a previous image or (b) the next image.

Directories

data/ 	 
	nuscenes/                 		    
		annotations/
		maps/
		samples/
		sweeps/
		v1.0-trainval/
lib/
scripts/
external/       
	RAFT/                   	     				

Setup

  • Create a conda environment called pda
conda create -n pda python=3.6
  • Install required packages
pip install -r requirements.txt
  • Download nuScenes dataset (Full dataset (v1.0) Trainval) into data/nuscenes/
  • Clone external repos RAFT into external/

Code

1. Data preparation

cd scripts

# 1) split data
python split_data.py

# 2) extract images for flow computation
python prepare_flow_im.py

# 3) compute image flow
python cal_flow.py 

# 4) transform image flow to normalized expression (u2,v2)
python cal_im_flow2uv.py  

# 5) create .h5 dataset file
python gen_h5_file3.py           

2. Estimate radar-camera association

python train_association.py        # train
python test_association.py         # demo

Download pre-trained weights

3. Predict radar full velocity

# 1) generate offsets of radar projections based on associations
python test_association.py  --gen_offset

# 2) demo of full velocity prediction
python prd_full_v.py

# 3) evaluation of point-wise velocity
python pt_wise_error.py

Citation

@InProceedings{Long_2021_ICCV,
    author    = {Long, Yunfei and Morris, Daniel and Liu, Xiaoming and Castro, Marcos and Chakravarty, Punarjay and Narayanan, Praveen},
    title     = {Full-Velocity Radar Returns by Radar-Camera Fusion},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
    month     = {October},
    year      = {2021}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages