Skip to content

Commit

Permalink
Merge pull request SWivid#196 from thunn/add_pre_commit_tooling
Browse files Browse the repository at this point in the history
add and run pre-commit with ruff
  • Loading branch information
SWivid authored Oct 21, 2024
2 parents 77e00db + a4ca14b commit 0f9f878
Show file tree
Hide file tree
Showing 29 changed files with 1,833 additions and 1,334 deletions.
14 changes: 14 additions & 0 deletions .github/workflows/pre-commit.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
name: pre-commit

on:
pull_request:
push:
branches: [main]

jobs:
pre-commit:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v3
- uses: pre-commit/[email protected]
14 changes: 14 additions & 0 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.7.0
hooks:
# Run the linter.
- id: ruff
args: [--fix]
# Run the formatter.
- id: ruff-format
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v2.3.0
hooks:
- id: check-yaml
20 changes: 20 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,26 @@ pip install -r requirements.txt
docker build -t f5tts:v1 .
```

### Development

When making a pull request, please use pre-commit to ensure code quality:

```bash
pip install pre-commit
pre-commit install
```

This will run linters and formatters automatically before each commit.

Manually run using:

```bash
pre-commit run --all-files
```

Note: Some model components have linting exceptions for E722 to accommodate tensor notation


## Prepare Dataset

Example data processing scripts for Emilia and Wenetspeech4TTS, and you may tailor your own one along with a Dataset class in `model/dataset.py`.
Expand Down
103 changes: 61 additions & 42 deletions finetune-cli.py
Original file line number Diff line number Diff line change
@@ -1,67 +1,89 @@
import argparse
from model import CFM, UNetT, DiT, MMDiT, Trainer
from model import CFM, UNetT, DiT, Trainer
from model.utils import get_tokenizer
from model.dataset import load_dataset
from cached_path import cached_path
import shutil,os
import shutil
import os

# -------------------------- Dataset Settings --------------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256

tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)

# -------------------------- Argument Parsing --------------------------- #
def parse_args():
parser = argparse.ArgumentParser(description='Train CFM Model')

parser.add_argument('--exp_name', type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"],help='Experiment name')
parser.add_argument('--dataset_name', type=str, default="Emilia_ZH_EN", help='Name of the dataset to use')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate for training')
parser.add_argument('--batch_size_per_gpu', type=int, default=256, help='Batch size per GPU')
parser.add_argument('--batch_size_type', type=str, default="frame", choices=["frame", "sample"],help='Batch size type')
parser.add_argument('--max_samples', type=int, default=16, help='Max sequences per batch')
parser.add_argument('--grad_accumulation_steps', type=int, default=1,help='Gradient accumulation steps')
parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
parser.add_argument('--epochs', type=int, default=10, help='Number of training epochs')
parser.add_argument('--num_warmup_updates', type=int, default=5, help='Warmup steps')
parser.add_argument('--save_per_updates', type=int, default=10, help='Save checkpoint every X steps')
parser.add_argument('--last_per_steps', type=int, default=10, help='Save last checkpoint every X steps')
parser.add_argument('--finetune', type=bool, default=True, help='Use Finetune')

parser = argparse.ArgumentParser(description="Train CFM Model")

parser.add_argument(
"--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name"
)
parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use")
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate for training")
parser.add_argument("--batch_size_per_gpu", type=int, default=256, help="Batch size per GPU")
parser.add_argument(
"--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type"
)
parser.add_argument("--max_samples", type=int, default=16, help="Max sequences per batch")
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
parser.add_argument("--epochs", type=int, default=10, help="Number of training epochs")
parser.add_argument("--num_warmup_updates", type=int, default=5, help="Warmup steps")
parser.add_argument("--save_per_updates", type=int, default=10, help="Save checkpoint every X steps")
parser.add_argument("--last_per_steps", type=int, default=10, help="Save last checkpoint every X steps")
parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune")

parser.add_argument(
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type"
)
parser.add_argument(
"--tokenizer_path",
type=str,
default=None,
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
)

return parser.parse_args()


# -------------------------- Training Settings -------------------------- #


def main():
args = parse_args()


# Model parameters based on experiment name
if args.exp_name == "F5TTS_Base":
wandb_resume_id = None
model_cls = DiT
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
if args.finetune:
ckpt_path = str(cached_path(f"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
elif args.exp_name == "E2TTS_Base":
wandb_resume_id = None
model_cls = UNetT
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
if args.finetune:
ckpt_path = str(cached_path(f"hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))

if args.finetune:
path_ckpt = os.path.join("ckpts",args.dataset_name)
if os.path.isdir(path_ckpt)==False:
os.makedirs(path_ckpt,exist_ok=True)
shutil.copy2(ckpt_path,os.path.join(path_ckpt,os.path.basename(ckpt_path)))

checkpoint_path=os.path.join("ckpts",args.dataset_name)

# Use the dataset_name provided in the command line
tokenizer_path = args.dataset_name if tokenizer != "custom" else tokenizer_path
path_ckpt = os.path.join("ckpts", args.dataset_name)
if not os.path.isdir(path_ckpt):
os.makedirs(path_ckpt, exist_ok=True)
shutil.copy2(ckpt_path, os.path.join(path_ckpt, os.path.basename(ckpt_path)))

checkpoint_path = os.path.join("ckpts", args.dataset_name)

# Use the tokenizer and tokenizer_path provided in the command line arguments
tokenizer = args.tokenizer
if tokenizer == "custom":
if not args.tokenizer_path:
raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.")
tokenizer_path = args.tokenizer_path
else:
tokenizer_path = args.dataset_name

vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)

mel_spec_kwargs = dict(
Expand All @@ -71,11 +93,7 @@ def main():
)

e2tts = CFM(
transformer=model_cls(
**model_cfg,
text_num_embeds=vocab_size,
mel_dim=n_mel_channels
),
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
mel_spec_kwargs=mel_spec_kwargs,
vocab_char_map=vocab_char_map,
)
Expand All @@ -99,10 +117,11 @@ def main():
)

train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
trainer.train(train_dataset,
resumable_with_seed=666 # seed for shuffling dataset
)
trainer.train(
train_dataset,
resumable_with_seed=666, # seed for shuffling dataset
)


if __name__ == '__main__':
if __name__ == "__main__":
main()
Loading

0 comments on commit 0f9f878

Please sign in to comment.