Skip to content

Commit

Permalink
Merge branch 'develop' into fix/bpmn-serializer
Browse files Browse the repository at this point in the history
  • Loading branch information
FelixTJDietrich authored Aug 5, 2024
2 parents c15089d + accdabc commit b83553c
Show file tree
Hide file tree
Showing 9 changed files with 239 additions and 492 deletions.
9 changes: 9 additions & 0 deletions docs/administration_of_deployments/configuration.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
Configuration
===========================================

Athena can serve requests from multiple LM systems. It uses a custom HTTP header ``X-Server-URL`` to identify the origin of each request. To prevent unauthorized use of resources, the admin must whitelist all supported deployments. This configuration is done in the ``assessment_module_manager/deployments.ini`` file or the corresponding Docker analog for server deployments using Docker images.

For each listed deployment, the admin must define a corresponding secret in the environment variable ``LMS_DEPLOYMENT_NAME_SECRET`` (replace DEPLOYMENT_NAME with the name from the .ini file) of the ``assessment_module_manager``.
Please note: Playground counts as an LMS and needs its own record.

This configuration does not exclude or replace inter-module authentication; Athena still requires keys between modules and the assessment module manager.
7 changes: 7 additions & 0 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -66,3 +66,10 @@ Athena will use the information it is given and provide the automatic suggestion

athena_package/storage
athena_package/helpers

.. toctree::
:caption: Administration of Deployments
:includehidden:
:maxdepth: 1

administration_of_deployments/configuration
3 changes: 1 addition & 2 deletions env_example/assessment_module_manager.env
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
PRODUCTION=1
SECRET=abcdef12345

# module secrets, same as in the module env files
MODULE_EXAMPLE_SECRET=12345abcdef
Expand All @@ -9,7 +8,7 @@ MODULE_TEXT_COFEE_SECRET=12345abcdef
MODULE_PROGRAMMING_THEMISML_SECRET=12345abcdef

################################################################
# LMS Deployments #
# LMS Deployments #
################################################################
# the deployment name should correspond to the name in deployments.ini
LMS_DEPLOYMENT_NAME_SECRET=12345abcdef
13 changes: 7 additions & 6 deletions module_text_llm/.env.example
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ DATABASE_URL=sqlite:///../data/data.sqlite

# Default model to use
# See below for options, available models are also logged on startup
LLM_DEFAULT_MODEL="azure_openai_gpt-35"
LLM_DEFAULT_MODEL="azure_openai_gpt-35-turbo"

# Enable LLM-as-a-judge approach 0 = disabled, 1 = enabled
LLM_ENABLE_LLM_AS_A_JUDGE=1
Expand All @@ -23,13 +23,14 @@ LLM_EVALUATION_MODEL="azure_openai_gpt-4"
# Standard OpenAI (Non-Azure) [leave blank if not used]
# Model names prefixed with `openai_` followed by the model name, e.g. `openai_text-davinci-003`
# A list of models can be found in `module_text_llm/helpers/models/openai.py` (openai_models)
LLM_OPENAI_API_KEY="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
OPENAI_API_KEY="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

# Azure OpenAI [leave blank if not used]
# Model names prefixed with `azure_openai_` followed by the deployment id, e.g. `azure_openai_gpt-35`
LLM_AZURE_OPENAI_API_KEY="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
LLM_AZURE_OPENAI_API_BASE="https://ase-eu01.openai.azure.com/" # change base if needed
LLM_AZURE_OPENAI_API_VERSION="2023-07-01-preview" # change base if needed
AZURE_OPENAI_API_KEY="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
AZURE_OPENAI_ENDPOINT="https://ase-eu01.openai.azure.com/" # change base if needed
OPENAI_API_VERSION="2023-07-01-preview" # change base if needed
AZURE_DEPLOYMENTS=gpt-35-turbo,gpt-4-turbo,gpt-4-vision,gpt-4o

# Replicate [leave blank if not used]
# See https://replicate.com and adjust model config options in `module_text_llm/helpers/models/replicate.py`
Expand All @@ -40,4 +41,4 @@ REPLICATE_API_TOKEN=
# LANGCHAIN_TRACING_V2=true
# LANGCHAIN_ENDPOINT="https://api.smith.langchain.com"
# LANGCHAIN_API_KEY="XXX"
# LANGCHAIN_PROJECT="XXX"
# LANGCHAIN_PROJECT="XXX"
10 changes: 0 additions & 10 deletions module_text_llm/module_text_llm/helpers/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,16 +23,6 @@
except AttributeError:
pass

try:
import module_text_llm.helpers.models.replicate as replicate_config
types.append(replicate_config.ReplicateModelConfig)
if default_model_name in replicate_config.available_models:
DefaultModelConfig = replicate_config.ReplicateModelConfig
if evaluation_model_name in replicate_config.available_models:
evaluation_model = replicate_config.available_models[evaluation_model_name]
except AttributeError:
pass

if not types:
raise EnvironmentError(
"No model configurations available, please set up at least one provider in the environment variables.")
Expand Down
256 changes: 23 additions & 233 deletions module_text_llm/module_text_llm/helpers/models/openai.py
Original file line number Diff line number Diff line change
@@ -1,254 +1,44 @@
import os
from contextlib import contextmanager
from typing import Any, Callable, Dict, List
from typing import Any , Dict
from pydantic import Field, validator, PositiveInt
from enum import Enum

import openai
from langchain.chat_models import AzureChatOpenAI, ChatOpenAI
from langchain.llms import AzureOpenAI, OpenAI
from langchain.llms.openai import BaseOpenAI
from langchain.base_language import BaseLanguageModel

from langchain_openai import AzureChatOpenAI, ChatOpenAI
from athena.logger import logger
from .model_config import ModelConfig


OPENAI_PREFIX = "openai_"
AZURE_OPENAI_PREFIX = "azure_openai_"


#########################################################################
# Monkey patching openai/langchain api #
# ===================================================================== #
# This allows us to have multiple api keys i.e. mixing #
# openai and azure openai api keys so we can use not only deployed #
# models but also models from the non-azure openai api. #
# This is mostly for testing purposes, in production we can just deploy #
# the models to azure that we want to use. #
#########################################################################

# Prevent LangChain error, we will set the key later
os.environ["OPENAI_API_KEY"] = ""

def _wrap(old: Any, new: Any) -> Callable:
def repl(*args: Any, **kwargs: Any) -> Any:
new(args[0]) # args[0] is self
return old(*args, **kwargs)
return repl


def _async_wrap(old: Any, new: Any):
async def repl(*args, **kwargs):
new(args[0]) # args[0] is self
return await old(*args, **kwargs)
return repl


def _set_credentials(self):
openai.api_key = self.openai_api_key

api_type = "open_ai"
api_base = "https://api.openai.com/v1"
api_version = None
if hasattr(self, "openai_api_type"):
api_type = self.openai_api_type

if api_type == "azure":
if hasattr(self, "openai_api_base"):
api_base = self.openai_api_base
if hasattr(self, "openai_api_version"):
api_version = self.openai_api_version

openai.api_type = api_type
openai.api_base = api_base
openai.api_version = api_version


# Monkey patching langchain
# pylint: disable=protected-access
ChatOpenAI._generate = _wrap(ChatOpenAI._generate, _set_credentials) # type: ignore
ChatOpenAI._agenerate = _async_wrap(ChatOpenAI._agenerate, _set_credentials) # type: ignore
BaseOpenAI._generate = _wrap(BaseOpenAI._generate, _set_credentials) # type: ignore
BaseOpenAI._agenerate = _async_wrap(BaseOpenAI._agenerate, _set_credentials) # type: ignore
# pylint: enable=protected-access

#########################################################################
# Monkey patching end #
#########################################################################


def _use_azure_credentials():
openai.api_type = "azure"
openai.api_key = os.environ.get("LLM_AZURE_OPENAI_API_KEY")
openai.api_base = os.environ.get("LLM_AZURE_OPENAI_API_BASE")
# os.environ.get("LLM_AZURE_OPENAI_API_VERSION")
openai.api_version = "2023-03-15-preview"


def _use_openai_credentials():
openai.api_type = "open_ai"
openai.api_key = os.environ.get("LLM_OPENAI_API_KEY")
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None


openai_available = bool(os.environ.get("LLM_OPENAI_API_KEY"))
azure_openai_available = bool(os.environ.get("LLM_AZURE_OPENAI_API_KEY"))


# This is a hack to make sure that the openai api is set correctly
# Right now it is overkill, but it will be useful when the api gets fixed and we no longer
# hardcode the model names (i.e. OpenAI fixes their api)
@contextmanager
def _openai_client(use_azure_api: bool, is_preference: bool):
"""Set the openai client to use the correct api type, if available
Args:
use_azure_api (bool): If true, use the azure api, else use the openai api
is_preference (bool): If true, it can fall back to the other api if the preferred one is not available
"""
if use_azure_api:
if azure_openai_available:
_use_azure_credentials()
elif is_preference and openai_available:
_use_openai_credentials()
elif is_preference:
raise EnvironmentError(
"No OpenAI api available, please set LLM_AZURE_OPENAI_API_KEY, LLM_AZURE_OPENAI_API_BASE and "
"LLM_AZURE_OPENAI_API_VERSION environment variables or LLM_OPENAI_API_KEY environment variable"
)
else:
raise EnvironmentError(
"Azure OpenAI api not available, please set LLM_AZURE_OPENAI_API_KEY, LLM_AZURE_OPENAI_API_BASE and "
"LLM_AZURE_OPENAI_API_VERSION environment variables"
)
else:
if openai_available:
_use_openai_credentials()
elif is_preference and azure_openai_available:
_use_azure_credentials()
elif is_preference:
raise EnvironmentError(
"No OpenAI api available, please set LLM_OPENAI_API_KEY environment variable or LLM_AZURE_OPENAI_API_KEY, "
"LLM_AZURE_OPENAI_API_BASE and LLM_AZURE_OPENAI_API_VERSION environment variables"
)
else:
raise EnvironmentError(
"OpenAI api not available, please set LLM_OPENAI_API_KEY environment variable"
)

# API client is setup correctly
yield


def _get_available_deployments(openai_models: Dict[str, List[str]], model_aliases: Dict[str, str]):
available_deployments: Dict[str, Dict[str, Any]] = {
"chat_completion": {},
"completion": {},
"fine_tuneing": {},
}

if azure_openai_available:
with _openai_client(use_azure_api=True, is_preference=False):
deployments = openai.Deployment.list().get("data") or [] # type: ignore
for deployment in deployments:
model_name = deployment.model
if model_name in model_aliases:
model_name = model_aliases[model_name]
if model_name in openai_models["chat_completion"]:
available_deployments["chat_completion"][deployment.id] = deployment
elif model_name in openai_models["completion"]:
available_deployments["completion"][deployment.id] = deployment
elif model_name in openai_models["fine_tuneing"]:
available_deployments["fine_tuneing"][deployment.id] = deployment

return available_deployments


def _get_available_models(openai_models: Dict[str, List[str]],
available_deployments: Dict[str, Dict[str, Any]]):
available_models: Dict[str, BaseLanguageModel] = {}

if openai_available:
openai_api_key = os.environ["LLM_OPENAI_API_KEY"]
for model_name in openai_models["chat_completion"]:
available_models[OPENAI_PREFIX + model_name] = ChatOpenAI(
model=model_name,
openai_api_key=openai_api_key,
client="",
temperature=0
)
for model_name in openai_models["completion"]:
available_models[OPENAI_PREFIX + model_name] = OpenAI(
model=model_name,
openai_api_key=openai_api_key,
client="",
temperature=0
)

if azure_openai_available:
azure_openai_api_key = os.environ["LLM_AZURE_OPENAI_API_KEY"]
azure_openai_api_base = os.environ["LLM_AZURE_OPENAI_API_BASE"]
azure_openai_api_version = os.environ["LLM_AZURE_OPENAI_API_VERSION"]

for model_type, Model in [("chat_completion", AzureChatOpenAI), ("completion", AzureOpenAI)]:
for deployment_name, deployment in available_deployments[model_type].items():
available_models[AZURE_OPENAI_PREFIX + deployment_name] = Model(
model=deployment.model,
deployment_name=deployment_name,
openai_api_base=azure_openai_api_base,
openai_api_version=azure_openai_api_version,
openai_api_key=azure_openai_api_key,
client="",
temperature=0
)

return available_models


_model_aliases = {
"gpt-35-turbo": "gpt-3.5-turbo",
}

# Hardcoded because openai can't provide a trustworthly api to get the list of models and capabilities...
openai_models = {
"chat_completion": [
"gpt-4",
# "gpt-4-32k", # Not publicly available
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k"
],
"completion": [
"text-davinci-003",
"text-curie-001",
"text-babbage-001",
"text-ada-001",
],
"fine_tuneing": [
"davinci",
"curie",
"babbage",
"ada",
]
}
available_deployments = _get_available_deployments(openai_models, _model_aliases)
available_models = _get_available_models(openai_models, available_deployments)

openai_available = bool(os.environ.get("OPENAI_API_KEY"))
azure_openai_available = bool(os.environ.get("AZURE_OPENAI_API_KEY"))

available_models: Dict[str, BaseLanguageModel] = {}

if openai_available:
openai.api_type= "openai"
for model in openai.models.list():
if model.owned_by == "openai":
available_models[OPENAI_PREFIX + model.id] = ChatOpenAI(#type:ignore
model=model.id,
)

if azure_openai_available:
# Will be replaced in the future
for deployment in os.environ['AZURE_DEPLOYMENTS'].split(','):
available_models[AZURE_OPENAI_PREFIX + deployment] = AzureChatOpenAI(deployment_name=deployment, temperature=0, client="")

if available_models:
logger.info("Available openai models: %s", ", ".join(available_models.keys()))

OpenAIModel = Enum('OpenAIModel', {name: name for name in available_models}) # type: ignore


default_model_name = "gpt-3.5-turbo"
default_model_name = None
if "LLM_DEFAULT_MODEL" in os.environ and os.environ["LLM_DEFAULT_MODEL"] in available_models:
default_model_name = os.environ["LLM_DEFAULT_MODEL"]
if default_model_name not in available_models:
default_model_name = list(available_models.keys())[0]

default_openai_model = OpenAIModel[default_model_name]

default_openai_model = OpenAIModel[default_model_name]#type:ignore

# Long descriptions will be displayed in the playground UI and are copied from the OpenAI docs
class OpenAIModelConfig(ModelConfig):
Expand Down Expand Up @@ -307,7 +97,7 @@ def get_model(self) -> BaseLanguageModel:
BaseLanguageModel: The model.
"""
model = available_models[self.model_name.value]
kwargs = model._lc_kwargs
kwargs = model.__dict__
secrets = {secret: getattr(model, secret) for secret in model.lc_secrets.keys()}
kwargs.update(secrets)

Expand Down
Loading

0 comments on commit b83553c

Please sign in to comment.