This library wraps pyarrow
to provide some tools to easily convert
JSON data into Parquet format. It is mostly in Python. It iterates over
files. It copies the data several times in memory. It is not meant to be
the fastest thing available. However, it is convenient for smaller data
sets, or people who don't have a huge issue with speed.
pip install json2parquet
Here's how to load a random JSON dataset.
from json2parquet import convert_json
# Infer Schema (requires reading dataset for column names)
convert_json(input_filename, output_filename)
# Given columns
convert_json(input_filename, output_filename, ["my_column", "my_int"])
# Given PyArrow schema
import pyarrow as pa
schema = pa.schema([
pa.field('my_column', pa.string),
pa.field('my_int', pa.int64),
])
convert_json(input_filename, output_filename, schema)
You can also work with Python data structures directly
from json2parquet import load_json, ingest_data, write_parquet
# Loading JSON to a PyArrow RecordBatch (schema is optional as above)
load_json(input_filename, schema)
# Working with a list of dictionaries
ingest_data(input_data, schema)
# Writing Parquet Files from PyArrow Record Batches
write_parquet(data, destination)
# You can also pass any keyword arguments that PyArrow accepts
write_parquet(data, destination, compression='snappy')
Although json2parquet
can infer schemas, it has helpers to pull in external ones as well
from json2parquet import load_json
from json2parquet.helpers import get_schema_from_redshift
# Fetch the schema from Redshift (requires psycopg2)
schema = get_schema_from_redshift(redshift_schema, redshift_table, redshift_uri)
# Load JSON with the Redshift schema
load_json(input_filename, schema)
If you are using this library to convert JSON data to be read by Spark
, Athena
, Spectrum
or Presto
make sure you use use_deprecated_int96_timestamps
when writing your Parquet files, otherwise you will see some really screwy dates.
- Clone a fork of the library
- Run
make setup
- Run
make test
- Apply your changes (don't bump version)
- Add tests if needed
- Run
make test
to ensure nothing broke - Submit PR
It is always a struggle to keep documentation correct and up to date. Any fixes are welcome. If you don't want to clone the repo to work locally, please feel free to edit using Github and to submit Pull Requests via Github's built in features.