Skip to content

Spatio-Angular Convolutions for Super-resolution in Diffusion MRI

License

Notifications You must be signed in to change notification settings

m-lyon/dmri-pcconv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spatio-Angular Convolutions for Super-resolution in Diffusion MRI

Model Architecture

PyPI version

This project performs angular super-resolution of dMRI data through a parametric continuous convolutional neural network (PCCNN). This codebase is associated with the following paper. Please cite the paper if you use this model:

Spatio-Angular Convolutions for Super-resolution in Diffusion MRI [NeurIPS 2023]

Table of contents

Installation

dmri-pcconv can be installed via pip:

pip install dmri-pcconv

Requirements

dmri-pcconv uses PyTorch as the deep learning framework.

Listed below are the requirements for this package, these will automatically be installed when installing via pip.

  • torch
  • lightning
  • npy-patcher
  • einops
  • nibabel

Training

Follow the instructions below on how to train a PCCNN model for dMRI angular super-resolution.

Data Preprocessing

This training pipeline requires dMRI data to be saved in .npy format. Additionally, the angular dimension must be the first dimension within each 4D array. This is because this module uses npy-patcher to extract training patches at runtime. Below is an example of how to convert NIfTI files into .npy using nibabel.

import numpy as np

from dmri_pcconv.core.io import load_nifti

data, _ = load_nifti('/path/to/data.nii.gz')  # Load dMRI data into memory
data = data.transpose(3, 0, 1, 2)  # Move the angular dimension from last to first
data = data if data.flags['C_CONTIGUOUS'] else data.copy(order='C')  # Ensure data is in C-contiguous format.
np.save('/path/to/data.npy', data, allow_pickle=False)  # Save in npy format. Ensure this is on an SSD.

N.B. Patches are read lazily from disk, therefore it is highly recommended to store the training data on an SSD type device, as an HDD will significantly bottleneck the training process when data loading.

N.B. Numpy data needs to have C-contiguous memory ordering to be used by the npy-patcher module during training.

Additionally, xmax values are required prior to training, due to the lazy runtime of data extraction mentioned above. Below is an example of how to extract and save xmax values for a given subject.

from dmri_pcconv.core.io import load_bval, load_nifti
from dmri_pcconv.core.normalisation import TrainingNormaliser

bvals = load_bval('path/to/bvals')
dmri, _ = load_nifti('/path/to/dmri.nii.gz')
mask, _ = load_nifti('/path/to/brain_mask.nii.gz')

xmax_dict = TrainingNormaliser.calculate_xmax(dmri, bvals, mask)
TrainingNormaliser.save_xmax('/path/to/xmax.json', xmax_dict)

Example

Below is an example of how to train the PCCNN model, it uses the lightning module PCCNNLightningModel and data module PCCNNDataModule. The PCCNN-Bv, PCCNN-Sp, and PCCNN-Bv-Sp variants all have their own corresponding model and data module classes.

import lightning.pytorch as pl

from dmri_pcconv.core.qspace import QSpaceInfo
from dmri_pcconv.core.model import PCCNNLightningModel
from dmri_pcconv.core.training import Subject, PCCNNDataModule

# Collect dataset filepaths
subj1 = Subject(
    '/path/to/first/dmri.npy',
    '/path/to/first/bvecs',
    '/path/to/first/bvals',
    '/path/to/first/brain_mask.nii.gz',
    '/path/to/first/xmax.json'
)
subj2 = Subject(
    '/path/to/second/dmri.npy',
    '/path/to/second/bvecs',
    '/path/to/second/bvals',
    '/path/to/second/brain_mask.nii.gz',
    '/path/to/second/xmax.json'
)
subj3 = Subject(
    '/path/to/third/dmri.npy',
    '/path/to/third/bvecs',
    '/path/to/third/bvals',
    '/path/to/third/brain_mask.nii.gz',
    '/path/to/third/xmax.json'
)

# Assign Q-space training parameters
qinfo = QSpaceInfo(
    q_in_min=6, # Minimum number of q-space samples each training example will hold
    q_in_max=20  # Maximum number. Training will sample in between this range.
    q_out=10  # Number of output samples per training example.
    shells=(1000, 2000, 3000)  # Shells used in training and prediction.
    seed=12345  # Optionally provide a random seed for sampling
)

# Create DataModule instance. This is a thin wrapper around `pl.LightningDataModule`.
data_module = PCCNNDataModule(
    train_subjects=(subj1, subj2),
    val_subjects=(subj3),
    qinfo=qinfo,
    batch_size=16, # Batch size of each device
    num_workers=8, # Number of CPU workers that load the data
    seed=12345, # Optionally provide a random seed for sampling
)

# Load PCCNN lightning model
model = PCCNNLightningModel()

# Create `pl.Trainer` instance. `PCCNNDataModule` is usable in DDP distributed training strategy.
trainer = pl.Trainer(devices=1, accelerator='gpu', epochs=100)

# Start training
trainer.fit(model, data_module)

N.B. Each training input consists of one shell (randomly sampled from the shells argument to QSpaceInfo) of size q_in where q_in is randomly sampled from a range between q_in_min and q_in_max. Each training output consists of one shell (again, randomly sampled from the shells argument) of size q_out.

Prediction

Here we outline how to perform prediction after training.

import torch

from dmri_pcconv.core.weights import get_weights
from dmri_pcconv.core.model import PCCNNBvLightningModel
from dmri_pcconv.core.prediction import PCCNNBvPredictionProcessor

# Load your pretrained weights

## From the original paper
weights = torch.load(get_weights('pccnn-bv'))
model = PCCNNBvLightningModel()
model.load_state_dict(weights)

## Or from a pytorch_lightning checkpoint
model = PCCNNBvLightningModel.load_from_checkpoint('/path/to/my/checkpoint.ckpt')

# Run prediction
predict = PCCNNBvPredictionProcessor(batch_size=4, num_workers=8, accelerator='gpu')
predict.run_subject(
    model=model,
    dmri_in='/path/to/context_dmri.nii.gz',
    bvec_in='/path/to/context_bvecs',
    bval_in='/path/to/context_bvals',
    bvec_out='/path/to/target_bvecs',
    bval_out='/path/to/target_bvals',
    mask='/path/to/brain_mask.nii.gz',
    out_fpath='/path/to/predicted_dmri.nii.gz',
)

N.B. Weights provided by the get_weights function are saved within ~/.dmri_pcconv by default. Set DMRI_PCCONV_DIR environment variable to override the save directory.

About

Spatio-Angular Convolutions for Super-resolution in Diffusion MRI

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages