Skip to content

Commit

Permalink
missing setrun and setplot for corner problem
Browse files Browse the repository at this point in the history
  • Loading branch information
rjleveque committed Oct 6, 2014
1 parent 66d4a91 commit 593a28f
Show file tree
Hide file tree
Showing 2 changed files with 368 additions and 0 deletions.
125 changes: 125 additions & 0 deletions fvmbook/chap22/corner/setplot.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@

"""
Set up the plot figures, axes, and items to be done for each frame.
This module is imported by the plotting routines and then the
function setplot is called to set the plot parameters.
"""

#--------------------------
def setplot(plotdata):
#--------------------------

"""
Specify what is to be plotted at each frame.
Input: plotdata, an instance of clawpack.visclaw.data.ClawPlotData.
Output: a modified version of plotdata.
"""


from clawpack.visclaw import colormaps
from numpy import linspace

plotdata.clearfigures() # clear any old figures,axes,items data

def plot_corner(current_data):
from pylab import plot
plot([.0,.0],[-1,0],'r',linewidth=2)
plot([.0,1],[0,.55],'r',linewidth=2)

def sigmatr(current_data):
# trace of sigma
q = current_data.q
return q[0,:,:] + q[1,:,:]



# Figure for trace of sigma
plotfigure = plotdata.new_plotfigure(name='trace(sigma)', figno=0)

# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes()
plotaxes.xlimits = 'auto'
plotaxes.ylimits = 'auto'
plotaxes.title = 'trace(sigma)'
plotaxes.scaled = True
plotaxes.afteraxes = plot_corner

# Set up for item on these axes:
plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
plotitem.plot_var = sigmatr
plotitem.pcolor_cmap = colormaps.red_yellow_blue
plotitem.pcolor_cmin = -1.
plotitem.pcolor_cmax = 1.
plotitem.add_colorbar = True
plotitem.show = True # show on plot?



# Figure for shear stress
plotfigure = plotdata.new_plotfigure(name='shear', figno=1)

# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes()
plotaxes.xlimits = 'auto'
plotaxes.ylimits = 'auto'
plotaxes.title = 'shear stress'
plotaxes.scaled = True
plotaxes.afteraxes = plot_corner

# Set up for item on these axes:
plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
plotitem.plot_var = 2 # sigma_12
plotitem.pcolor_cmap = colormaps.red_yellow_blue
plotitem.pcolor_cmin = -0.2
plotitem.pcolor_cmax = 0.2
plotitem.add_colorbar = True
plotitem.show = True # show on plot?


# Figure for contours
plotfigure = plotdata.new_plotfigure(name='contours', figno=2)

# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes()
plotaxes.xlimits = 'auto'
plotaxes.ylimits = 'auto'
plotaxes.title = 'pressure(black) and shear(green)'
plotaxes.scaled = True
plotaxes.afteraxes = plot_corner

# Set up for item on these axes:
plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
plotitem.plot_var = sigmatr
plotitem.contour_levels = linspace(-2,8,50)
plotitem.contour_colors = 'k'
plotitem.show = True # show on plot?

# Set up for item on these axes:
plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
plotitem.plot_var = 2 # sigma_12
plotitem.contour_levels = linspace(-0.4,0.4,30)
plotitem.contour_colors = 'g'
plotitem.show = True # show on plot?



# Parameters used only when creating html and/or latex hardcopy
# e.g., via clawpack.visclaw.frametools.printframes:

plotdata.printfigs = True # print figures
plotdata.print_format = 'png' # file format
plotdata.print_framenos = 'all' # list of frames to print
plotdata.print_fignos = 'all' # list of figures to print
plotdata.html = True # create html files of plots?
plotdata.html_homelink = '../README.html' # pointer for top of index
plotdata.latex = True # create latex file of plots?
plotdata.latex_figsperline = 2 # layout of plots
plotdata.latex_framesperline = 1 # layout of plots
plotdata.latex_makepdf = False # also run pdflatex?

return plotdata


243 changes: 243 additions & 0 deletions fvmbook/chap22/corner/setrun.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
"""
Module to set up run time parameters for Clawpack -- classic code.
The values set in the function setrun are then written out to data files
that will be read in by the Fortran code.
"""

import os
import numpy as np

#------------------------------
def setrun(claw_pkg='classic'):
#------------------------------

"""
Define the parameters used for running Clawpack.
INPUT:
claw_pkg expected to be "classic" for this setrun.
OUTPUT:
rundata - object of class ClawRunData
"""

from clawpack.clawutil import data


assert claw_pkg.lower() == 'classic', "Expected claw_pkg = 'classic'"

num_dim = 2
rundata = data.ClawRunData(claw_pkg, num_dim)

#------------------------------------------------------------------
# Problem-specific parameters to be written to setprob.data:
#------------------------------------------------------------------
# Sample setup to write one line to setprob.data ...
probdata = rundata.new_UserData(name='probdata',fname='setprob.data')
probdata.add_param('rho1', 1., 'rho1')
probdata.add_param('lam1', 4., 'lam1')
probdata.add_param('mu1', 0.5, 'mu1')
probdata.add_param('rho2', 1., 'rho2')
probdata.add_param('lam2', 2., 'lam2')
probdata.add_param('mu2', 1.0, 'mu2')

#------------------------------------------------------------------
# Standard Clawpack parameters to be written to claw.data:
#------------------------------------------------------------------

clawdata = rundata.clawdata # initialized when rundata instantiated


# ---------------
# Spatial domain:
# ---------------

# Number of space dimensions:
clawdata.num_dim = num_dim

# Lower and upper edge of computational domain:
clawdata.lower[0] = -1.000000e+00 # xlower
clawdata.upper[0] = 1.000000e+00 # xupper
clawdata.lower[1] = -1.000000e+00 # ylower
clawdata.upper[1] = 1.000000e+00 # yupper

# Number of grid cells:
clawdata.num_cells[0] = 200 # mx
clawdata.num_cells[1] = 200 # my


# ---------------
# Size of system:
# ---------------

# Number of equations in the system:
clawdata.num_eqn = 5

# Number of auxiliary variables in the aux array (initialized in setaux)
clawdata.num_aux = 5

# Index of aux array corresponding to capacity function, if there is one:
clawdata.capa_index = 0


# -------------
# Initial time:
# -------------

clawdata.t0 = 0.000000


# Restart from checkpoint file of a previous run?
# Note: If restarting, you must also change the Makefile to set:
# RESTART = True
# If restarting, t0 above should be from original run, and the
# restart_file 'fort.qNNNN' specified below should be in
# the OUTDIR indicated in Makefile.

clawdata.restart = False # True to restart from prior results
clawdata.restart_file = 'fort.q0006' # File to use for restart data


# -------------
# Output times:
#--------------

# Specify at what times the results should be written to fort.q files.
# Note that the time integration stops after the final output time.

clawdata.output_style = 1

if clawdata.output_style==1:
# Output ntimes frames at equally spaced times up to tfinal:
# Can specify num_output_times = 0 for no output
clawdata.num_output_times = 10
clawdata.tfinal = 0.500000
clawdata.output_t0 = True # output at initial (or restart) time?

elif clawdata.output_style == 2:
# Specify a list or numpy array of output times:
# Include t0 if you want output at the initial time.
clawdata.output_times = [0., 0.1]

elif clawdata.output_style == 3:
# Output every step_interval timesteps over total_steps timesteps:
clawdata.output_step_interval = 2
clawdata.total_steps = 4
clawdata.output_t0 = True # output at initial (or restart) time?


clawdata.output_format = 'ascii' # 'ascii', 'binary', 'netcdf'

clawdata.output_q_components = 'all' # could be list such as [True,True]
clawdata.output_aux_components = 'none' # could be list
clawdata.output_aux_onlyonce = True # output aux arrays only at t0


# ---------------------------------------------------
# Verbosity of messages to screen during integration:
# ---------------------------------------------------

# The current t, dt, and cfl will be printed every time step
# at AMR levels <= verbosity. Set verbosity = 0 for no printing.
# (E.g. verbosity == 2 means print only on levels 1 and 2.)
clawdata.verbosity = 1



# --------------
# Time stepping:
# --------------

# if dt_variable==True: variable time steps used based on cfl_desired,
# if dt_variable==False: fixed time steps dt = dt_initial always used.
clawdata.dt_variable = True

# Initial time step for variable dt.
# (If dt_variable==0 then dt=dt_initial for all steps)
clawdata.dt_initial = 1.000000e-02

# Max time step to be allowed if variable dt used:
clawdata.dt_max = 1.000000e+99

# Desired Courant number if variable dt used
clawdata.cfl_desired = 0.900000
# max Courant number to allow without retaking step with a smaller dt:
clawdata.cfl_max = 1.000000

# Maximum number of time steps to allow between output times:
clawdata.steps_max = 500


# ------------------
# Method to be used:
# ------------------

# Order of accuracy: 1 => Godunov, 2 => Lax-Wendroff plus limiters
clawdata.order = 2

# Use dimensional splitting? (not yet available for AMR)
clawdata.dimensional_split = 'unsplit'

# For unsplit method, transverse_waves can be
# 0 or 'none' ==> donor cell (only normal solver used)
# 1 or 'increment' ==> corner transport of waves
# 2 or 'all' ==> corner transport of 2nd order corrections too
clawdata.transverse_waves = 2


# Number of waves in the Riemann solution:
clawdata.num_waves = 4

# List of limiters to use for each wave family:
# Required: len(limiter) == num_waves
# Some options:
# 0 or 'none' ==> no limiter (Lax-Wendroff)
# 1 or 'minmod' ==> minmod
# 2 or 'superbee' ==> superbee
# 3 or 'vanleer' ==> van Leer
# 4 or 'mc' ==> MC limiter
clawdata.limiter = ['mc', 'mc', 'mc', 'mc']

clawdata.use_fwaves = False # True ==> use f-wave version of algorithms

# Source terms splitting:
# src_split == 0 or 'none' ==> no source term (src routine never called)
# src_split == 1 or 'godunov' ==> Godunov (1st order) splitting used,
# src_split == 2 or 'strang' ==> Strang (2nd order) splitting used, not recommended.
clawdata.source_split = 0


# --------------------
# Boundary conditions:
# --------------------

# Number of ghost cells (usually 2)
clawdata.num_ghost = 2

# Choice of BCs at xlower and xupper:
# 0 or 'user' => user specified (must modify bcNamr.f to use this option)
# 1 or 'extrap' => extrapolation (non-reflecting outflow)
# 2 or 'periodic' => periodic (must specify this at both boundaries)
# 3 or 'wall' => solid wall for systems where q(2) is normal velocity

clawdata.bc_lower[0] = 'extrap' # at xlower
clawdata.bc_upper[0] = 'extrap' # at xupper

clawdata.bc_lower[1] = 'extrap' # at ylower
clawdata.bc_upper[1] = 'extrap' # at yupper

return rundata

# end of function setrun
# ----------------------


if __name__ == '__main__':
# Set up run-time parameters and write all data files.
import sys
rundata = setrun(*sys.argv[1:])
rundata.write()

0 comments on commit 593a28f

Please sign in to comment.