Skip to content

matkovst/ComputerVisionToolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GitHub release Documentation

ComputerVisionToolkit

My personal cross-platform toolkit for doing Image Processing and Intelligent Video Analytics experiments. It comes with:

  • lib.cvtoolkit library encapsulating the most common and helpful functions

  • a set of samples showing how to implement various computer vision tasks

    Samples list
    • Background subtraction (exponential forgetting, KNN, MOG2)
    • Illumination estimation
    • Image processing (color filters, image derivatives, smoothing, histograms)
    • Image classification (InceptionV3, EfficientNet)
    • Semantic segmentation (Mask R-CNN)
    • Object detection (YOLO)
    • Monodepth
    • Motion detector
    • Optical flow
    • Shadow removal


Requirements

  • GCC 9.3.0 compiler for Linux / VS 2019 for Windows
  • CMake >= 3.18
  • OpenCV >= 3.0:
    • (optional) with CUDA support
  • (optional) LibTorch >= 1.8.2
  • (optional) ONNX Runtime >= 1.10.0

Build & Install

With CMake

The whole project can be built with CMake

export OpenCV_DIR=path/to/opencv
# (optional) export ENABLE_OPENCV_CUDA=ON
# (optional) export Torch_DIR=path/to/libtorch
# (optional) export Onnxruntime_DIR=path/to/onnxruntime

mkdir build && cd build
cmake ..
make
make install

With VS Code

Add this to .vscode/settings.json

"cmake.configureSettings": 
{
    "OpenCV_DIR": "path/to/OpenCVConfig.cmake",
    "Torch_DIR": "path/to/TorchConfig.cmake",
    "Onnxruntime_DIR": "path/to/onnxruntime",
}

Run

Choose desired task in bin/ directory (like laplacian) and just execute it.

cd bin
./laplacian -?

About

My personal toolkit for doing CV experiments

Resources

Stars

Watchers

Forks

Packages

No packages published