My personal cross-platform toolkit for doing Image Processing and Intelligent Video Analytics experiments. It comes with:
-
lib.cvtoolkit library encapsulating the most common and helpful functions
-
a set of samples showing how to implement various computer vision tasks
Samples list
- Background subtraction (exponential forgetting, KNN, MOG2)
- Illumination estimation
- Image processing (color filters, image derivatives, smoothing, histograms)
- Image classification (InceptionV3, EfficientNet)
- Semantic segmentation (Mask R-CNN)
- Object detection (YOLO)
- Monodepth
- Motion detector
- Optical flow
- Shadow removal
- GCC 9.3.0 compiler for Linux / VS 2019 for Windows
- CMake >= 3.18
- OpenCV >= 3.0:
- (optional) with CUDA support
- (optional) LibTorch >= 1.8.2
- (optional) ONNX Runtime >= 1.10.0
The whole project can be built with CMake
export OpenCV_DIR=path/to/opencv
# (optional) export ENABLE_OPENCV_CUDA=ON
# (optional) export Torch_DIR=path/to/libtorch
# (optional) export Onnxruntime_DIR=path/to/onnxruntime
mkdir build && cd build
cmake ..
make
make install
Add this to .vscode/settings.json
"cmake.configureSettings":
{
"OpenCV_DIR": "path/to/OpenCVConfig.cmake",
"Torch_DIR": "path/to/TorchConfig.cmake",
"Onnxruntime_DIR": "path/to/onnxruntime",
}
Choose desired task in bin/ directory (like laplacian) and just execute it.
cd bin
./laplacian -?