-
Notifications
You must be signed in to change notification settings - Fork 453
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add python script to analysis kid data
- Loading branch information
Showing
1 changed file
with
190 additions
and
0 deletions.
There are no files selected for viewing
190 changes: 190 additions & 0 deletions
190
contribs/small-scale-traffic-generation/src/main/python/analyze_kid.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
from datetime import timedelta | ||
|
||
import matplotlib.pyplot as plt | ||
import matplotlib.ticker as ticker | ||
import numpy as np | ||
import pandas as pd | ||
import seaborn as sns | ||
|
||
# %% | ||
|
||
sns.set_style("ticks") | ||
sns.set_context("paper", font_scale=1.2, rc={"grid.linewidth": 1, "lines.linewidth": 2}) | ||
# sns.set_palette("Set2") | ||
|
||
plt.rcParams['figure.dpi'] = 350 | ||
plt.rcParams['pdf.fonttype'] = 42 | ||
plt.rcParams['ps.fonttype'] = 42 | ||
plt.rcParams['font.family'] = 'Arial' | ||
|
||
palette = sns.color_palette("Set2") | ||
|
||
# %% | ||
|
||
d = "/Users/rakow/Development/shared-svn/studies/countries/de/KiD_2002/Daten/" | ||
|
||
Fahrten = pd.read_csv(d + "KiD_2002_(Einzel)Fahrten-Datei.txt", delimiter="\t", encoding="ISO-8859-1") | ||
Ketten = pd.read_csv(d + "KiD_2002_Fahrtenketten-Datei.txt", delimiter="\t", encoding="ISO-8859-1") | ||
Fahrzeug = pd.read_csv(d + "KiD_2002_Fahrzeug-Datei.txt", delimiter="\t", encoding="ISO-8859-1") | ||
|
||
# %% | ||
|
||
Fahrten["start"] = pd.to_datetime(Fahrten["F04"], errors="coerce") | ||
Fahrten["end"] = pd.to_datetime(Fahrten["F10a"], errors="coerce") | ||
|
||
# %% | ||
|
||
# Filter commercial trips | ||
df = Fahrten[Fahrten["F07b"] == 1] | ||
|
||
df = df.merge(Fahrzeug, on="K00") | ||
df = df.rename(columns={"K91": "w", "F14": "dist"}) | ||
|
||
df["type"] = df["F07a"].map( | ||
{1: "goodsTraffic", 2: "commercialPersonTraffic", 3: "commercialPersonTraffic", 4: "commercialPersonTraffic", | ||
5: "returnDepot"}) | ||
df = df[["K00", "F00", "start", "end", "w", "dist", "type"]] | ||
|
||
df["start"] = df["start"].dt.hour * 60 + df["start"].dt.minute | ||
df["end"] = df["end"].dt.hour * 60 + df["end"].dt.minute | ||
|
||
# Filter valid ranges | ||
df = df[df.start <= df.end] | ||
|
||
df["duration"] = df.end - df.start | ||
|
||
df = df.dropna() | ||
|
||
purpose = df.groupby("K00").apply( | ||
lambda x: "goodsTraffic" if "goodsTraffic" in set(x["type"]) else "commercialPersonTraffic") | ||
|
||
# %% | ||
|
||
durations = [0, 10, 20, 30, 40, 50, 60, 75, 90, 105, 120, 150, 180, 240, 300, 420, 540, 660, np.inf] | ||
|
||
df["dur_group"] = pd.cut(df.duration, durations) | ||
|
||
starts = [0, 4 * 60, 5 * 60, 6 * 60, 7 * 60, 8 * 60, 9 * 60, 10 * 60, 11 * 60, 12 * 60, 13 * 60, 14 * 60, 15 * 60, | ||
16 * 60, 17 * 60, 18 * 60, 19 * 60, np.inf] | ||
start_labels = ["0-4", "4-5", "5-6", "6-7", "7-8", "8-9", "9-10", "10-11", "11-12", "12-13", "13-14", "14-15", "15-16", | ||
"16-17", "17-18", "18-19", "19-24"] | ||
|
||
df["start_group"] = pd.cut(df.start, starts) | ||
|
||
# %% | ||
|
||
x = np.arange(start=0, stop=24 * 60, step=15, dtype=np.float64) | ||
|
||
# %% | ||
|
||
y = np.zeros_like(x) | ||
|
||
for t in df.itertuples(): | ||
idx = np.searchsorted(x, [t.start, t.end]) | ||
idx[1] += 1 | ||
|
||
y[slice(*idx)] += t.w | ||
|
||
y /= np.max(y / 1000) | ||
|
||
# %% | ||
|
||
fig, ax = plt.subplots(figsize=(8, 4)) | ||
|
||
sns.lineplot(x=x, y=y, ax=ax) | ||
|
||
sns.despine() | ||
|
||
ax.xaxis.set_major_locator(ticker.FixedLocator(np.arange(start=0, stop=24 * 60, step=120, dtype=np.float64))) | ||
ax.xaxis.set_major_formatter(lambda x, y: str(timedelta(minutes=x))[:-3]) | ||
|
||
# %% | ||
|
||
|
||
sns.histplot(data=df, x="duration", bins=durations) | ||
|
||
# %% | ||
|
||
# Only commercial tours | ||
|
||
Ketten["start"] = pd.to_datetime(Ketten["T04"], errors="coerce") | ||
|
||
tf = Ketten[Ketten.T07 == 1] | ||
|
||
tf = tf.merge(Fahrzeug, on="K00").set_index("K00") | ||
tf["type"] = purpose | ||
|
||
tf["start"] = tf["start"].dt.hour * 60 + tf["start"].dt.minute | ||
|
||
tf = tf.rename(columns={"K91": "w", "T01": "duration", "T05": "dist", "K03": "vWeight"}) | ||
|
||
tf = tf[tf.duration > 0] | ||
|
||
tf = tf[["start", "w", "duration", "dist", "vWeight", "type"]] | ||
|
||
tf = tf.dropna() | ||
|
||
# %% | ||
|
||
vehicles = [0, 2800, 3500, 7500, 12000, 100000] | ||
|
||
tf["vClass"] = pd.cut(tf.vWeight, vehicles, labels=["vehType1", "vehType2", "vehType3", "vehType4", "vehType5"]) | ||
|
||
t_durations = np.hstack(([0, 30, 60, 90], np.arange(120, 15 * 60, step=60, dtype=np.float64), [18 * 60])) | ||
|
||
tf["dur_group"] = pd.cut(tf.duration, t_durations) | ||
tf["start_group"] = pd.cut(tf.start, starts, labels=start_labels) | ||
|
||
tf = tf.dropna() | ||
|
||
# %% | ||
|
||
aggr = tf.groupby(["type", "start_group", "dur_group"]).agg(p=("w", "sum")) | ||
|
||
for group in ("goodsTraffic", "commercialPersonTraffic"): | ||
sub = aggr.loc[group, :] | ||
sub.p /= sub.p.sum() | ||
|
||
aggr = aggr.reset_index() | ||
|
||
target = "goodsTraffic" | ||
for a in aggr.itertuples(): | ||
|
||
if a.type != target or a.p <= 0: | ||
continue | ||
|
||
f, t = a.start_group.split("-") | ||
lower, upper = a.dur_group.left, a.dur_group.right | ||
|
||
print(f"Pair.create(new TourStartAndDuration({f}, {t}, {lower}, {upper}), {a.p}),") | ||
|
||
# %% | ||
|
||
fig, ax = plt.subplots(figsize=(8, 4)) | ||
|
||
sns.histplot(data=tf, x="start", bins=starts, ax=ax) | ||
|
||
sns.despine() | ||
|
||
ax.xaxis.set_major_locator(ticker.FixedLocator(np.arange(start=0, stop=24 * 60, step=120, dtype=np.float64))) | ||
ax.xaxis.set_major_formatter(lambda x, y: str(timedelta(minutes=x))[:-3]) | ||
|
||
# %% | ||
|
||
fig, ax = plt.subplots(figsize=(8, 4)) | ||
|
||
sns.histplot(data=tf, x="duration", bins=t_durations, ax=ax) | ||
sns.despine() | ||
|
||
ax.xaxis.set_major_formatter(lambda x, y: int(x // 60)) | ||
ax.xaxis.set_major_locator(ticker.FixedLocator(np.arange(start=0, stop=24 * 60, step=60, dtype=np.float64))) | ||
|
||
# %% | ||
|
||
grid = sns.FacetGrid(tf, col="start_group", col_wrap=6, palette="tab20c") | ||
|
||
grid.map_dataframe(sns.histplot, x="duration", bins=t_durations, stat="percent") | ||
|
||
# %% |