Skip to content

matteoLorenzini/description_quality

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Classification of textual descriptions in cultural heritage records

Binary classification task to automatically identify high-quality and low-quality descriptions in cultural heritage records.

Resources

Dependencies

  • Python3
  • Pandas

Pipeline

  • converter.py:creates vector data in .tsv format

  • FastText folder:

    • prepare4fastTextClassifier.py:
      • converts the input .csv file in FT format (i.e __label__Good).
      • splits the input dataset in folds, by default 10. (--fold option)
    • fasttextClassifier.py
      • classifies the descriptions (*.csv.fbclass file) and returns a file (.eval.gz) with the classification report.
    • evaluate.py
      • evaluates the classification task results from the *.eval.gz file
  • LibSVM folder:

  • learning_curve folder:

License: CC BY-SA 4.0 License: CC BY-SA 4.0

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages