-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEKF.m
278 lines (212 loc) · 8.26 KB
/
EKF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
% The model of the analized problem is:
%
% x(k+1) = fk(x(k),u(k),nu(k)) -> nu is the noise in the model
% z(k) = hk(x(k),epsilon(k)) -> epsilon is the noise on the measures
%
% The Ekf is divided into steps:
% - predicion:
% x_est(k+1) = fk(x_est(k), u(k))
% P_est(k+1) = A(k)P_est(k)A(k)' + G(k)Q(k)G(k)'
%
% where:
% A(k) is the jacobian of fk(x,u,nu) w.r.t the state e and evaluated in the x_est(k) and u(k) with nu = 0
% G(k) is the jacobian of fk(x,u,nu) w.r.t nu e and evaluated in the x_est(k) and u(k) with nu = 0
%
% - update:
% S(k+1) = H(k+1)P_est(k+1)H(k+1)' + R(k+1)
% W(k+1) = P_est(k+1)H(k+1)'/S(k+1)
% x_est(k+1) = x_est(k+1) + W(k+1)(z(k+1) - hk+1(x_est(k+1)))
% P_est(k+1) = (I - W(k+1)H(k+1))P_est(k+1)
%
% where:
% H(k+1) is the jacobian of hk+1(x,epsilon) w.r.t the state e and evaluated in the x_est(k+1) and epsilon = 0
robot = Robot();
map = Map(map_param);
x_est = zeros(3, 1);
P_est = zeros(3, 3);
pos_robot = cell(N_laserscans,1);
cov_robot = cell(N_laserscans,1);
tmp = 0;
tmp2 = 0;
T_limit = N_laserscans;
P_est_norm = zeros(T_limit, 1);
disp('Starting the cycle')
% Temporal cycle
for k = 1:T_limit
fprintf('================================> Iteration %6d <================================\n', k);
fprintf('Current map size: %d\n', map.size());
%check_covariance_matrix(P_est, 'Iteration start');
N_feat_map = map.size();
F_X = eye(2*N_feat_map + 3);
F_X(1:3,1:3) = robot.JF_x(odometries{1,k});
F_N = zeros(2*N_feat_map + 3, 3);
F_N(1:3,1:3) = robot.JF_n();
N = odometries{k}.Q;
% KF Prediction ------------------------------------------------------
fprintf('Prediction...');
x_est(1:3) = robot.update_step(odometries{k});
P_est = F_X*P_est*F_X' + F_N*N*F_N';
fprintf('Done!\n');
check_covariance_matrix(P_est, 'After prediction');
robot.x = x_est(1:3);
robot.P = P_est(1:3, 1:3);
fprintf('Copying states from EKF to map...');
for i = 1:map.size()
map.landmark_vector(i).x = x_est(3 + 2*i - 1:3 + 2*i);
map.landmark_vector(i).P = P_est(3 + 2*i - 1:3 + 2*i, 3 + 2*i - 1:3 + 2*i);
end
fprintf('Done!\n');
tmp = eig(P_est);
tmp2 = diag(P_est);
% KF update -----------------------------------------------------------
% Update if the map is not empty
if map.size() > 0
fprintf('Performing an update step ');
[z, H_X, R] = map.compute_innovation(robot, laserscans{k}.observations,k);
fprintf('using %d observations...', round(length(z)/2));
S = H_X*P_est*H_X' + R;
W = P_est*H_X'*inv(S);
x_est = x_est + W*z;
P_est = P_est - W*S*W';
% P_est = P_est - W*H_X*P_est;
fprintf('Done!\n');
else
fprintf('Empty map, no update step necessary!\n');
end
check_covariance_matrix(P_est, 'After update')
% Update the map
fprintf('Copying states from EKF to map...');
% Creating the map
for i = 1:map.size()
map.landmark_vector(i).x = x_est(3 + 2*i - 1:3 + 2*i);
map.landmark_vector(i).P = P_est(3 + 2*i - 1:3 + 2*i, 3 + 2*i - 1:3 + 2*i);
check_covariance_matrix(map.landmark_vector(i).P, 'Copying landmark after update')
end
robot.x = x_est(1:3);
robot.P = P_est(1:3, 1:3);
P_est_norm(k) = norm(robot.P);
pos_robot{k,1} = x_est(1:3);
cov_robot{k,1} = P_est(1:3,1:3);
fprintf('Done!\n');
fprintf('Performing map update...');
observation_to_add = laserscans{k}.observations(2:end-1);
new_features = map.up_map(robot, observation_to_add);
fprintf('found %d new features\n', length(new_features));
for i = 1:length(new_features)
fprintf('Adding new feature #%2d (observation %d)... ', i, new_features(i));
landmark_index = new_features(i);
obs = observation_to_add{landmark_index};
landmark = Landmark(robot, obs);
P_LL = landmark.P; % eq (35)
check_covariance_matrix(P_LL, 'Stacking a new landmark in P_LL');
P_Rx = P_est(1:3, :); % eq (6)
[JG_R, ~] = landmark.compute_jacobians(robot, obs);
P_Lx = JG_R*P_Rx; % eq (36)
x_est = [x_est; landmark.x]; % eq (37)
P_est = [P_est, P_Lx'; % eq (38)
P_Lx, P_LL];
fprintf('Done!\n');
check_covariance_matrix(P_est, 'Stacking a new landmark');
end
% Deleting features that are too close
if map.size() > 1
for i = 4:2:(length(x_est) - 4)
for j = i+2:2:(length(x_est) -2)
dist = sqrt((x_est(i) - x_est(j))^2 + (x_est(i+1) - x_est(j+1))^2);
if(dist < min_distance_features)
Pi = norm(P_est(i:i+1,i:i+1));
Pj = norm(P_est(j:j+1,j:j+1));
if(Pi < Pj)
x_est(j:j+1) = [];
P_est(j:j+1,:) = [];
P_est(:,j:j+1) = [];
else
x_est(i:i+1) = [];
P_est(i:i+1,:) = [];
P_est(:,i:i+1) = [];
end
fprintf('Two features collapsed ****************************************\n');
% Re creating the map
for ss = 1:(map.size() - 1)
map.landmark_vector(ss).x = x_est(3 + 2*ss - 1:3 + 2*ss);
map.landmark_vector(ss).P = P_est(3 + 2*ss - 1:3 + 2*ss, 3 + 2*ss - 1:3 + 2*ss);
check_covariance_matrix(map.landmark_vector(ss).P, 'Copying landmark after update')
end
map.landmark_vector(ss+1) = [];
break;
end
end
end
end
if rand(1) < 0.01 && plot_figure == true
figure(2),clf;
% set(gcf, 'Position', get(0, 'Screensize'));
subplot(1,2,1);
for i = 1:length(laserscans{k}.observations)
plot(Landmark(robot,laserscans{k}.observations{i}).x(1),Landmark(robot,laserscans{k}.observations{i}).x(2),'or')
hold on
plotErrorEllipse([Landmark(robot,laserscans{k}.observations{i}).x(1),Landmark(robot,laserscans{k}.observations{i}).x(2)], Landmark(robot,laserscans{k}.observations{i}).P, 0.95,'r')
hold on;
end
plot(robot.x(1),robot.x(2),'og','MarkerSize',5,'Linewidth',2);
hold on
[a,b,c,d,maxx,maxy] = compute_boundaries(map,robot,laserscans{k}.observations);
inside_rect = old_landmark_inside_rectangle(map,robot,laserscans{k}.observations,maxx,maxy);
rectx = [a(1),b(1),c(1),d(1)];
recty = [a(2),b(2),c(2),d(2)];
plot(rectx,recty,'-g','Linewidth',1);
hold on
if map.check_loop == true
for i = 1:length(inside_rect)
plot(map.landmark_vector(inside_rect(i)).x(1), map.landmark_vector(inside_rect(i)).x(2), '^k');
axis equal
hold on;
plotErrorEllipse([map.landmark_vector(inside_rect(i)).x(1), map.landmark_vector(inside_rect(i)).x(2)], map.landmark_vector(inside_rect(i)).P, 0.95,'k')
hold on;
end
hold on;
for i = 1:map.size()
if length(find(inside_rect == i)) == 0
plot(map.landmark_vector(i).x(1), map.landmark_vector(i).x(2), '*b');
axis equal
hold on;
else
continue;
end
plotErrorEllipse([map.landmark_vector(i).x(1),map.landmark_vector(i).x(2)], map.landmark_vector(i).P, 0.95,'b')
hold on;
end
else
for i = 1:map.size()
plot(map.landmark_vector(i).x(1), map.landmark_vector(i).x(2), '*b');
axis equal
hold on;
plotErrorEllipse([map.landmark_vector(i).x(1),map.landmark_vector(i).x(2)], map.landmark_vector(i).P, 0.95,'b')
hold on;
end
end
title('Map updating')
xlabel ('x [m]');
ylabel ('y [m]');
subplot(1,2,2)
plot(laserscans{k})
title('Observed features')
xlabel ('x [m]');
ylabel ('y [m]');
end
end
function check_covariance_matrix(P, text)
if ~all(eig(P) >= 0)
if nargin == 2
fprintf('\n\nCOVARIANCE ERROR: %s\n\n', text);
end
error('The covariance matrix of the observation is not positive definite');
end
end
function plotErrorEllipse(mu, Sigma, p, color)
s = -2 * log(1 - p);
[V, D] = eig(Sigma * s);
t = linspace(0, 2 * pi);
a = (V * sqrt(D)) * [cos(t(:))'; sin(t(:))'];
plot(a(1, :) + mu(1), a(2, :) + mu(2),color);
end