Skip to content

mcbeth/GettingCleaning_ClassProject

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

run_analysis.R downloads accellerometer data, cleans it, and leaves two datasets in your environment. The second dataset is also written to disk for review

cleaned.data contains the mean and standard deviations of measurements from of several sensors of a variety of people (Subject) performing a variety of activities (Activity).

average.data contains the average mean and average standard deviations of the measurements grouped by Subject and Activity

The original data can be found at http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

The data was filtered to contain just the mean and standard deviations of the measurements and then further summarized to give the average mean and average standard deviation, grouped by Subject and Activity

A more full description from the original creators is given below, and an even more full description is available in the zip file that is downloaded by run_analysis.R

================================================================== Human Activity Recognition Using Smartphones Dataset Version 1.0

Jorge L. Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca Oneto. Smartlab - Non Linear Complex Systems Laboratory DITEN - Università degli Studi di Genova. Via Opera Pia 11A, I-16145, Genoa, Italy. [email protected] www.smartlab.ws

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz.

License:

Use of this dataset in publications must be acknowledged by referencing the following publication [1]

[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012

This dataset is distributed AS-IS and no responsibility implied or explicit can be addressed to the authors or their institutions for its use or misuse. Any commercial use is prohibited.

Jorge L. Reyes-Ortiz, Alessandro Ghio, Luca Oneto, Davide Anguita. November 2012.

Feature Selection

The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.

Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag, tBodyGyroJerkMag).

Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).

These signals were used to estimate variables of the feature vector for each pattern:
'-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.

tBodyAcc-XYZ tGravityAcc-XYZ tBodyAccJerk-XYZ tBodyGyro-XYZ tBodyGyroJerk-XYZ tBodyAccMag tGravityAccMag tBodyAccJerkMag tBodyGyroMag tBodyGyroJerkMag fBodyAcc-XYZ fBodyAccJerk-XYZ fBodyGyro-XYZ fBodyAccMag fBodyAccJerkMag fBodyGyroMag fBodyGyroJerkMag

The set of variables that were estimated from these signals are:

mean(): Mean value std(): Standard deviation mad(): Median absolute deviation max(): Largest value in array min(): Smallest value in array sma(): Signal magnitude area energy(): Energy measure. Sum of the squares divided by the number of values. iqr(): Interquartile range entropy(): Signal entropy arCoeff(): Autorregresion coefficients with Burg order equal to 4 correlation(): correlation coefficient between two signals maxInds(): index of the frequency component with largest magnitude meanFreq(): Weighted average of the frequency components to obtain a mean frequency skewness(): skewness of the frequency domain signal kurtosis(): kurtosis of the frequency domain signal bandsEnergy(): Energy of a frequency interval within the 64 bins of the FFT of each window. angle(): Angle between to vectors.

Additional vectors obtained by averaging the signals in a signal window sample. These are used on the angle() variable:

gravityMean tBodyAccMean tBodyAccJerkMean tBodyGyroMean tBodyGyroJerkMean

The complete list of variables of each feature vector is available in 'features.txt'

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages