Skip to content

Commit

Permalink
Merge branch 'master' into deprecate_args
Browse files Browse the repository at this point in the history
  • Loading branch information
StrikerRUS committed Aug 29, 2021
2 parents d775b00 + 846e895 commit 92ef478
Show file tree
Hide file tree
Showing 26 changed files with 208 additions and 136 deletions.
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -326,7 +326,7 @@ coverage.xml
.hypothesis/
**/coverage.html
**/coverage.html.zip
R-package/tests/testthat/Rplots.pdf
**/Rplots.pdf

# Translations
*.mo
Expand Down Expand Up @@ -427,6 +427,7 @@ miktex*.zip
*.def

# Files created by examples and tests
*.buffer
**/lgb-Dataset.data
**/lgb.Dataset.data
**/model.txt
Expand Down
47 changes: 31 additions & 16 deletions R-package/R/lgb.Booster.R
Original file line number Diff line number Diff line change
Expand Up @@ -743,20 +743,23 @@ Booster <- R6::R6Class(
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' params <- list(
#' objective = "regression"
#' , metric = "l2"
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' preds <- predict(model, test$data)
#'
#' # pass other prediction parameters
#' predict(
#' preds <- predict(
#' model,
#' test$data,
#' params = list(
Expand Down Expand Up @@ -824,15 +827,18 @@ predict.lgb.Booster <- function(object,
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' params <- list(
#' objective = "regression"
#' , metric = "l2"
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 3L
#' )
#' model_file <- tempfile(fileext = ".txt")
Expand Down Expand Up @@ -885,15 +891,18 @@ lgb.load <- function(filename = NULL, model_str = NULL) {
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' params <- list(
#' objective = "regression"
#' , metric = "l2"
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 10L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 5L
#' )
#' lgb.save(model, tempfile(fileext = ".txt"))
Expand Down Expand Up @@ -936,15 +945,18 @@ lgb.save <- function(booster, filename, num_iteration = NULL) {
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' params <- list(
#' objective = "regression"
#' , metric = "l2"
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 10L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 5L
#' )
#' json_model <- lgb.dump(model)
Expand Down Expand Up @@ -983,15 +995,18 @@ lgb.dump <- function(booster, num_iteration = NULL) {
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' params <- list(
#' objective = "regression"
#' , metric = "l2"
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#'
#' # Examine valid data_name values
Expand Down
5 changes: 4 additions & 1 deletion R-package/R/lgb.Dataset.R
Original file line number Diff line number Diff line change
Expand Up @@ -1145,12 +1145,15 @@ lgb.Dataset.set.categorical <- function(dataset, categorical_feature) {
#'
#' @examples
#' \donttest{
#' # create training Dataset
#' data(agaricus.train, package ="lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
#'
#' # create a validation Dataset, using dtrain as a reference
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset(test$data, test = train$label)
#' dtest <- lgb.Dataset(test$data, label = test$label)
#' lgb.Dataset.set.reference(dtest, dtrain)
#' }
#' @rdname lgb.Dataset.set.reference
Expand Down
9 changes: 6 additions & 3 deletions R-package/R/lgb.cv.R
Original file line number Diff line number Diff line change
Expand Up @@ -63,14 +63,17 @@ CVBooster <- R6::R6Class(
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
#' params <- list(objective = "regression", metric = "l2")
#' params <- list(
#' objective = "regression"
#' , metric = "l2"
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' model <- lgb.cv(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' , nfold = 3L
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' }
#' @importFrom data.table data.table setorderv
Expand Down
9 changes: 6 additions & 3 deletions R-package/R/lgb.train.R
Original file line number Diff line number Diff line change
Expand Up @@ -36,15 +36,18 @@
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' params <- list(
#' objective = "regression"
#' , metric = "l2"
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 3L
#' )
#' }
Expand Down
9 changes: 6 additions & 3 deletions R-package/R/lgb.unloader.R
Original file line number Diff line number Diff line change
Expand Up @@ -21,15 +21,18 @@
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' params <- list(
#' objective = "regression"
#' , metric = "l2"
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#'
#' lgb.unloader(restore = FALSE, wipe = FALSE, envir = .GlobalEnv)
Expand Down
9 changes: 6 additions & 3 deletions R-package/R/readRDS.lgb.Booster.R
Original file line number Diff line number Diff line change
Expand Up @@ -15,15 +15,18 @@
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' params <- list(
#' objective = "regression"
#' , metric = "l2"
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 10L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 5L
#' )
#' model_file <- tempfile(fileext = ".rds")
Expand Down
9 changes: 6 additions & 3 deletions R-package/R/saveRDS.lgb.Booster.R
Original file line number Diff line number Diff line change
Expand Up @@ -26,15 +26,18 @@
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' params <- list(
#' objective = "regression"
#' , metric = "l2"
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 10L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 5L
#' )
#' model_file <- tempfile(fileext = ".rds")
Expand Down
49 changes: 17 additions & 32 deletions R-package/demo/basic_walkthrough.R
Original file line number Diff line number Diff line change
Expand Up @@ -12,29 +12,33 @@ test <- agaricus.test
class(train$label)
class(train$data)

# Set parameters for model training
train_params <- list(
num_leaves = 4L
, learning_rate = 1.0
, objective = "binary"
, nthread = 2L
)

#--------------------Basic Training using lightgbm----------------
# This is the basic usage of lightgbm you can put matrix in data field
# Note: we are putting in sparse matrix here, lightgbm naturally handles sparse input
# Use sparse matrix when your feature is sparse (e.g. when you are using one-hot encoding vector)
print("Training lightgbm with sparseMatrix")
bst <- lightgbm(
data = train$data
, params = train_params
, label = train$label
, num_leaves = 4L
, learning_rate = 1.0
, nrounds = 2L
, objective = "binary"
)

# Alternatively, you can put in dense matrix, i.e. basic R-matrix
print("Training lightgbm with Matrix")
bst <- lightgbm(
data = as.matrix(train$data)
, params = train_params
, label = train$label
, num_leaves = 4L
, learning_rate = 1.0
, nrounds = 2L
, objective = "binary"
)

# You can also put in lgb.Dataset object, which stores label, data and other meta datas needed for advanced features
Expand All @@ -45,42 +49,32 @@ dtrain <- lgb.Dataset(
)
bst <- lightgbm(
data = dtrain
, num_leaves = 4L
, learning_rate = 1.0
, params = train_params
, nrounds = 2L
, objective = "binary"
)

# Verbose = 0,1,2
print("Train lightgbm with verbose 0, no message")
bst <- lightgbm(
data = dtrain
, num_leaves = 4L
, learning_rate = 1.0
, params = train_params
, nrounds = 2L
, objective = "binary"
, verbose = 0L
)

print("Train lightgbm with verbose 1, print evaluation metric")
bst <- lightgbm(
data = dtrain
, num_leaves = 4L
, learning_rate = 1.0
, params = train_params
, nrounds = 2L
, nthread = 2L
, objective = "binary"
, verbose = 1L
)

print("Train lightgbm with verbose 2, also print information about tree")
bst <- lightgbm(
data = dtrain
, num_leaves = 4L
, learning_rate = 1.0
, params = train_params
, nrounds = 2L
, nthread = 2L
, objective = "binary"
, verbose = 2L
)

Expand Down Expand Up @@ -126,25 +120,19 @@ valids <- list(train = dtrain, test = dtest)
print("Train lightgbm using lgb.train with valids")
bst <- lgb.train(
data = dtrain
, num_leaves = 4L
, learning_rate = 1.0
, params = train_params
, nrounds = 2L
, valids = valids
, nthread = 2L
, objective = "binary"
)

# We can change evaluation metrics, or use multiple evaluation metrics
print("Train lightgbm using lgb.train with valids, watch logloss and error")
bst <- lgb.train(
data = dtrain
, num_leaves = 4L
, learning_rate = 1.0
, params = train_params
, nrounds = 2L
, valids = valids
, eval = c("binary_error", "binary_logloss")
, nthread = 2L
, objective = "binary"
)

# lgb.Dataset can also be saved using lgb.Dataset.save
Expand All @@ -154,12 +142,9 @@ lgb.Dataset.save(dtrain, "dtrain.buffer")
dtrain2 <- lgb.Dataset("dtrain.buffer")
bst <- lgb.train(
data = dtrain2
, num_leaves = 4L
, learning_rate = 1.0
, params = train_params
, nrounds = 2L
, valids = valids
, nthread = 2L
, objective = "binary"
)

# information can be extracted from lgb.Dataset using getinfo
Expand Down
1 change: 0 additions & 1 deletion R-package/demo/categorical_features_rules.R
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,6 @@ params <- list(
, metric = "l2"
, min_data = 1L
, learning_rate = 0.1
, min_data = 0L
, min_hessian = 1.0
, max_depth = 2L
)
Expand Down
Loading

0 comments on commit 92ef478

Please sign in to comment.