-
Notifications
You must be signed in to change notification settings - Fork 3.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[R-package] Added unit tests (#2498)
- Loading branch information
Showing
6 changed files
with
252 additions
and
2 deletions.
There are no files selected for viewing
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
context("lgb.importance") | ||
|
||
test_that("lgb.importance() should reject bad inputs", { | ||
bad_inputs <- list( | ||
.Machine$integer.max | ||
, Inf | ||
, -Inf | ||
, NA | ||
, NA_real_ | ||
, -10L:10L | ||
, list(c("a", "b", "c")) | ||
, data.frame( | ||
x = rnorm(20) | ||
, y = sample( | ||
x = c(1, 2) | ||
, size = 20 | ||
, replace = TRUE | ||
) | ||
) | ||
, data.table::data.table( | ||
x = rnorm(20) | ||
, y = sample( | ||
x = c(1, 2) | ||
, size = 20 | ||
, replace = TRUE | ||
) | ||
) | ||
, lgb.Dataset( | ||
data = matrix(rnorm(100), ncol = 2) | ||
, label = matrix(sample(c(0, 1), 50, replace = TRUE)) | ||
) | ||
, "lightgbm.model" | ||
) | ||
for (input in bad_inputs){ | ||
expect_error({ | ||
lgb.importance(input) | ||
}, regexp = "'model' has to be an object of class lgb\\.Booster") | ||
} | ||
}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
context("lgb.interpete") | ||
|
||
.sigmoid <- function(x){ | ||
1 / (1 + exp(-x)) | ||
} | ||
.logit <- function(x){ | ||
log(x / (1 - x)) | ||
} | ||
|
||
test_that("lgb.intereprete works as expected for binary classification", { | ||
data(agaricus.train, package = "lightgbm") | ||
train <- agaricus.train | ||
dtrain <- lgb.Dataset(train$data, label = train$label) | ||
setinfo( | ||
dataset = dtrain | ||
, "init_score" | ||
, rep( | ||
.logit(mean(train$label)) | ||
, length(train$label) | ||
) | ||
) | ||
data(agaricus.test, package = "lightgbm") | ||
test <- agaricus.test | ||
params <- list( | ||
objective = "binary" | ||
, learning_rate = 0.01 | ||
, num_leaves = 63 | ||
, max_depth = -1 | ||
, min_data_in_leaf = 1 | ||
, min_sum_hessian_in_leaf = 1 | ||
) | ||
model <- lgb.train( | ||
params = params | ||
, data = dtrain | ||
, nrounds = 10 | ||
) | ||
num_trees <- 5 | ||
tree_interpretation <- lgb.interprete( | ||
model = model | ||
, data = test$data | ||
, idxset = 1:num_trees | ||
) | ||
expect_true(methods::is(tree_interpretation, "list")) | ||
expect_true(length(tree_interpretation) == num_trees) | ||
expect_null(names(tree_interpretation)) | ||
expect_true(all( | ||
sapply( | ||
X = tree_interpretation | ||
, FUN = function(treeDT){ | ||
checks <- c( | ||
data.table::is.data.table(treeDT) | ||
, identical(names(treeDT), c("Feature", "Contribution")) | ||
, is.character(treeDT[, Feature]) | ||
, is.numeric(treeDT[, Contribution]) | ||
) | ||
return(all(checks)) | ||
} | ||
) | ||
)) | ||
}) | ||
|
||
test_that("lgb.intereprete works as expected for multiclass classification", { | ||
data(iris) | ||
|
||
# We must convert factors to numeric | ||
# They must be starting from number 0 to use multiclass | ||
# For instance: 0, 1, 2, 3, 4, 5... | ||
iris$Species <- as.numeric(as.factor(iris$Species)) - 1 | ||
|
||
# Create imbalanced training data (20, 30, 40 examples for classes 0, 1, 2) | ||
train <- as.matrix(iris[c(1:20, 51:80, 101:140), ]) | ||
# The 10 last samples of each class are for validation | ||
test <- as.matrix(iris[c(41:50, 91:100, 141:150), ]) | ||
dtrain <- lgb.Dataset(data = train[, 1:4], label = train[, 5]) | ||
dtest <- lgb.Dataset.create.valid(dtrain, data = test[, 1:4], label = test[, 5]) | ||
params <- list( | ||
objective = "multiclass" | ||
, metric = "multi_logloss" | ||
, num_class = 3 | ||
, learning_rate = 0.00001 | ||
) | ||
model <- lgb.train( | ||
params = params | ||
, data = dtrain | ||
, nrounds = 10 | ||
, min_data = 1 | ||
) | ||
num_trees <- 5 | ||
tree_interpretation <- lgb.interprete( | ||
model = model | ||
, data = test[, 1:4] | ||
, idxset = 1:num_trees | ||
) | ||
expect_true(methods::is(tree_interpretation, "list")) | ||
expect_true(length(tree_interpretation) == num_trees) | ||
expect_null(names(tree_interpretation)) | ||
expect_true(all( | ||
sapply( | ||
X = tree_interpretation | ||
, FUN = function(treeDT){ | ||
checks <- c( | ||
data.table::is.data.table(treeDT) | ||
, identical(names(treeDT), c("Feature", "Class 0", "Class 1", "Class 2")) | ||
, is.character(treeDT[, Feature]) | ||
, is.numeric(treeDT[, `Class 0`]) | ||
, is.numeric(treeDT[, `Class 1`]) | ||
, is.numeric(treeDT[, `Class 2`]) | ||
) | ||
return(all(checks)) | ||
} | ||
) | ||
)) | ||
}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
context("lgb.plot.interpretation") | ||
|
||
.sigmoid <- function(x){ | ||
1 / (1 + exp(-x)) | ||
} | ||
.logit <- function(x){ | ||
log(x / (1 - x)) | ||
} | ||
|
||
test_that("lgb.plot.interepretation works as expected for binary classification", { | ||
data(agaricus.train, package = "lightgbm") | ||
train <- agaricus.train | ||
dtrain <- lgb.Dataset(train$data, label = train$label) | ||
setinfo( | ||
dataset = dtrain | ||
, "init_score" | ||
, rep( | ||
.logit(mean(train$label)) | ||
, length(train$label) | ||
) | ||
) | ||
data(agaricus.test, package = "lightgbm") | ||
test <- agaricus.test | ||
params <- list( | ||
objective = "binary" | ||
, learning_rate = 0.01 | ||
, num_leaves = 63 | ||
, max_depth = -1 | ||
, min_data_in_leaf = 1 | ||
, min_sum_hessian_in_leaf = 1 | ||
) | ||
model <- lgb.train( | ||
params = params | ||
, data = dtrain | ||
, nrounds = 10 | ||
) | ||
num_trees <- 5 | ||
tree_interpretation <- lgb.interprete( | ||
model = model | ||
, data = test$data | ||
, idxset = 1:num_trees | ||
) | ||
expect_true({ | ||
lgb.plot.interpretation( | ||
tree_interpretation_dt = tree_interpretation[[1]] | ||
, top_n = 5 | ||
) | ||
TRUE | ||
}) | ||
|
||
# should also work when you explicitly pass cex | ||
plot_res <- lgb.plot.interpretation( | ||
tree_interpretation_dt = tree_interpretation[[1]] | ||
, top_n = 5 | ||
, cex = 0.95 | ||
) | ||
expect_null(plot_res) | ||
}) | ||
|
||
test_that("lgb.plot.interepretation works as expected for multiclass classification", { | ||
data(iris) | ||
|
||
# We must convert factors to numeric | ||
# They must be starting from number 0 to use multiclass | ||
# For instance: 0, 1, 2, 3, 4, 5... | ||
iris$Species <- as.numeric(as.factor(iris$Species)) - 1 | ||
|
||
# Create imbalanced training data (20, 30, 40 examples for classes 0, 1, 2) | ||
train <- as.matrix(iris[c(1:20, 51:80, 101:140), ]) | ||
# The 10 last samples of each class are for validation | ||
test <- as.matrix(iris[c(41:50, 91:100, 141:150), ]) | ||
dtrain <- lgb.Dataset(data = train[, 1:4], label = train[, 5]) | ||
dtest <- lgb.Dataset.create.valid(dtrain, data = test[, 1:4], label = test[, 5]) | ||
params <- list( | ||
objective = "multiclass" | ||
, metric = "multi_logloss" | ||
, num_class = 3 | ||
, learning_rate = 0.00001 | ||
) | ||
model <- lgb.train( | ||
params = params | ||
, data = dtrain | ||
, nrounds = 10 | ||
, min_data = 1 | ||
) | ||
num_trees <- 5 | ||
tree_interpretation <- lgb.interprete( | ||
model = model | ||
, data = test[, 1:4] | ||
, idxset = 1:num_trees | ||
) | ||
plot_res <- lgb.plot.interpretation( | ||
tree_interpretation_dt = tree_interpretation[[1]] | ||
, top_n = 5 | ||
) | ||
expect_null(plot_res) | ||
}) |