Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[docs] R docs cleanup #2375

Merged
merged 2 commits into from
Sep 5, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 12 additions & 12 deletions R-package/R/lgb.Dataset.R
Original file line number Diff line number Diff line change
Expand Up @@ -635,9 +635,9 @@ Dataset <- R6::R6Class(
)
)

#' Construct lgb.Dataset object
#' Construct \code{lgb.Dataset} object
#'
#' Construct lgb.Dataset object from dense matrix, sparse matrix
#' Construct \code{lgb.Dataset} object from dense matrix, sparse matrix
#' or local file (that was created previously by saving an \code{lgb.Dataset}).
#'
#' @param data a \code{matrix} object, a \code{dgCMatrix} object or a character representing a filename
Expand All @@ -646,7 +646,7 @@ Dataset <- R6::R6Class(
#' @param colnames names of columns
#' @param categorical_feature categorical features
#' @param free_raw_data TRUE for need to free raw data after construct
#' @param info a list of information of the lgb.Dataset object
#' @param info a list of information of the \code{lgb.Dataset} object
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

good change, thank you

#' @param ... other information to pass to \code{info} or parameters pass to \code{params}
#'
#' @return constructed dataset
Expand Down Expand Up @@ -690,7 +690,7 @@ lgb.Dataset <- function(data,
#'
#' @param dataset \code{lgb.Dataset} object, training data
#' @param data a \code{matrix} object, a \code{dgCMatrix} object or a character representing a filename
#' @param info a list of information of the lgb.Dataset object
#' @param info a list of information of the \code{lgb.Dataset} object
#' @param ... other information to pass to \code{info}.
#'
#' @return constructed dataset
Expand Down Expand Up @@ -741,7 +741,7 @@ lgb.Dataset.construct <- function(dataset) {

}

#' Dimensions of an lgb.Dataset
#' Dimensions of an \code{lgb.Dataset}
#'
#' Returns a vector of numbers of rows and of columns in an \code{lgb.Dataset}.
#' @param x Object of class \code{lgb.Dataset}
Expand Down Expand Up @@ -852,9 +852,9 @@ dimnames.lgb.Dataset <- function(x) {
#' Slice a dataset
#'
#' Get a new \code{lgb.Dataset} containing the specified rows of
#' original lgb.Dataset object
#' original \code{lgb.Dataset} object
#'
#' @param dataset Object of class "lgb.Dataset"
#' @param dataset Object of class \code{lgb.Dataset}
#' @param idxset a integer vector of indices of rows needed
#' @param ... other parameters (currently not used)
#' @return constructed sub dataset
Expand Down Expand Up @@ -888,7 +888,7 @@ slice.lgb.Dataset <- function(dataset, idxset, ...) {

}

#' Get information of an lgb.Dataset object
#' Get information of an \code{lgb.Dataset} object
#'
#' @param dataset Object of class \code{lgb.Dataset}
#' @param name the name of the information field to get (see details)
Expand All @@ -901,8 +901,8 @@ slice.lgb.Dataset <- function(dataset, idxset, ...) {
#' \itemize{
#' \item \code{label}: label lightgbm learn from ;
#' \item \code{weight}: to do a weight rescale ;
#' \item \code{group}: group size
#' \item \code{init_score}: initial score is the base prediction lightgbm will boost from ;
#' \item \code{group}: group size ;
#' \item \code{init_score}: initial score is the base prediction lightgbm will boost from.
#' }
#'
#' @examples
Expand Down Expand Up @@ -937,9 +937,9 @@ getinfo.lgb.Dataset <- function(dataset, name, ...) {

}

#' Set information of an lgb.Dataset object
#' Set information of an \code{lgb.Dataset} object
#'
#' @param dataset Object of class "lgb.Dataset"
#' @param dataset Object of class \code{lgb.Dataset}
#' @param name the name of the field to get
#' @param info the specific field of information to set
#' @param ... other parameters
Expand Down
16 changes: 2 additions & 14 deletions R-package/R/lgb.prepare.R
Original file line number Diff line number Diff line change
@@ -1,30 +1,18 @@
#' Data preparator for LightGBM datasets (numeric)
#'
#' Attempts to prepare a clean dataset to prepare to put in a lgb.Dataset. Factors and characters are converted to numeric without integers. Please use \code{lgb.prepare_rules} if you want to apply this transformation to other datasets.
#' Attempts to prepare a clean dataset to prepare to put in a \code{lgb.Dataset}. Factors and characters are converted to numeric without integers. Please use \code{lgb.prepare_rules} if you want to apply this transformation to other datasets.
#'
#' @param data A data.frame or data.table to prepare.
#'
#' @return The cleaned dataset. It must be converted to a matrix format (\code{as.matrix}) for input in lgb.Dataset.
#' @return The cleaned dataset. It must be converted to a matrix format (\code{as.matrix}) for input in \code{lgb.Dataset}.
#'
#' @examples
#' library(lightgbm)
#' data(iris)
#'
#' str(iris)
#' # 'data.frame': 150 obs. of 5 variables:
#' # $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#' # $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#' # $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#' # $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#' # $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 ...
#'
#' str(lgb.prepare(data = iris)) # Convert all factors/chars to numeric
#' # 'data.frame': 150 obs. of 5 variables:
#' # $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#' # $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#' # $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#' # $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#' # $ Species : num 1 1 1 1 1 1 1 1 1 1 ...
#'
#' \dontrun{
#' # When lightgbm package is installed, and you do not want to load it
Expand Down
16 changes: 2 additions & 14 deletions R-package/R/lgb.prepare2.R
Original file line number Diff line number Diff line change
@@ -1,31 +1,19 @@
#' Data preparator for LightGBM datasets (integer)
#'
#' Attempts to prepare a clean dataset to prepare to put in a lgb.Dataset. Factors and characters are converted to numeric (specifically: integer). Please use \code{lgb.prepare_rules2} if you want to apply this transformation to other datasets. This is useful if you have a specific need for integer dataset instead of numeric dataset. Note that there are programs which do not support integer-only input. Consider this as a half memory technique which is dangerous, especially for LightGBM.
#' Attempts to prepare a clean dataset to prepare to put in a \code{lgb.Dataset}. Factors and characters are converted to numeric (specifically: integer). Please use \code{lgb.prepare_rules2} if you want to apply this transformation to other datasets. This is useful if you have a specific need for integer dataset instead of numeric dataset. Note that there are programs which do not support integer-only input. Consider this as a half memory technique which is dangerous, especially for LightGBM.
#'
#' @param data A data.frame or data.table to prepare.
#'
#' @return The cleaned dataset. It must be converted to a matrix format (\code{as.matrix}) for input in lgb.Dataset.
#' @return The cleaned dataset. It must be converted to a matrix format (\code{as.matrix}) for input in \code{lgb.Dataset}.
#'
#' @examples
#' library(lightgbm)
#' data(iris)
#'
#' str(iris)
#' # 'data.frame': 150 obs. of 5 variables:
#' # $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#' # $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#' # $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#' # $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#' # $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 ...
#'
#' # Convert all factors/chars to integer
#' str(lgb.prepare2(data = iris))
#' # 'data.frame': 150 obs. of 5 variables:
#' # $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#' # $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#' # $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#' # $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#' # $ Species : int 1 1 1 1 1 1 1 1 1 1 ...
#'
#' \dontrun{
#' # When lightgbm package is installed, and you do not want to load it
Expand Down
28 changes: 2 additions & 26 deletions R-package/R/lgb.prepare_rules.R
Original file line number Diff line number Diff line change
@@ -1,53 +1,35 @@
#' Data preparator for LightGBM datasets with rules (numeric)
#'
#' Attempts to prepare a clean dataset to prepare to put in a lgb.Dataset. Factors and characters are converted to numeric. In addition, keeps rules created so you can convert other datasets using this converter.
#' Attempts to prepare a clean dataset to prepare to put in a \code{lgb.Dataset}. Factors and characters are converted to numeric. In addition, keeps rules created so you can convert other datasets using this converter.
#'
#' @param data A data.frame or data.table to prepare.
#' @param rules A set of rules from the data preparator, if already used.
#'
#' @return A list with the cleaned dataset (\code{data}) and the rules (\code{rules}). The data must be converted to a matrix format (\code{as.matrix}) for input in lgb.Dataset.
#' @return A list with the cleaned dataset (\code{data}) and the rules (\code{rules}). The data must be converted to a matrix format (\code{as.matrix}) for input in \code{lgb.Dataset}.
#'
#' @examples
#' library(lightgbm)
#' data(iris)
#'
#' str(iris)
#' # 'data.frame': 150 obs. of 5 variables:
#' # $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#' # $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#' # $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#' # $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#' # $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 ...
#'
#' new_iris <- lgb.prepare_rules(data = iris) # Autoconverter
#' str(new_iris$data)
#' # 'data.frame': 150 obs. of 5 variables:
#' # $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#' # $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#' # $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#' # $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#' # $ Species : num 1 1 1 1 1 1 1 1 1 1 ...
#'
#' data(iris) # Erase iris dataset
#' iris$Species[1] <- "NEW FACTOR" # Introduce junk factor (NA)
#' # Warning message:
#' # In `[<-.factor`(`*tmp*`, 1, value = c(NA, 1L, 1L, 1L, 1L, 1L, 1L, :
#' # invalid factor level, NA generated
#'
#' # Use conversion using known rules
#' # Unknown factors become 0, excellent for sparse datasets
#' newer_iris <- lgb.prepare_rules(data = iris, rules = new_iris$rules)
#'
#' # Unknown factor is now zero, perfect for sparse datasets
#' newer_iris$data[1, ] # Species became 0 as it is an unknown factor
#' # Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#' # 1 5.1 3.5 1.4 0.2 0
#'
#' newer_iris$data[1, 5] <- 1 # Put back real initial value
#'
#' # Is the newly created dataset equal? YES!
#' all.equal(new_iris$data, newer_iris$data)
#' # [1] TRUE
#'
#' # Can we test our own rules?
#' data(iris) # Erase iris dataset
Expand All @@ -58,12 +40,6 @@
#' "virginica" = 1))
#' newest_iris <- lgb.prepare_rules(data = iris, rules = personal_rules)
#' str(newest_iris$data) # SUCCESS!
#' # 'data.frame': 150 obs. of 5 variables:
#' # $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#' # $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#' # $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#' # $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#' # $ Species : num 3 3 3 3 3 3 3 3 3 3 ...
#'
#' @importFrom data.table set
#' @export
Expand Down
28 changes: 2 additions & 26 deletions R-package/R/lgb.prepare_rules2.R
Original file line number Diff line number Diff line change
@@ -1,53 +1,35 @@
#' Data preparator for LightGBM datasets with rules (integer)
#'
#' Attempts to prepare a clean dataset to prepare to put in a lgb.Dataset. Factors and characters are converted to numeric (specifically: integer). In addition, keeps rules created so you can convert other datasets using this converter. This is useful if you have a specific need for integer dataset instead of numeric dataset. Note that there are programs which do not support integer-only input. Consider this as a half memory technique which is dangerous, especially for LightGBM.
#' Attempts to prepare a clean dataset to prepare to put in a \code{lgb.Dataset}. Factors and characters are converted to numeric (specifically: integer). In addition, keeps rules created so you can convert other datasets using this converter. This is useful if you have a specific need for integer dataset instead of numeric dataset. Note that there are programs which do not support integer-only input. Consider this as a half memory technique which is dangerous, especially for LightGBM.
#'
#' @param data A data.frame or data.table to prepare.
#' @param rules A set of rules from the data preparator, if already used.
#'
#' @return A list with the cleaned dataset (\code{data}) and the rules (\code{rules}). The data must be converted to a matrix format (\code{as.matrix}) for input in lgb.Dataset.
#' @return A list with the cleaned dataset (\code{data}) and the rules (\code{rules}). The data must be converted to a matrix format (\code{as.matrix}) for input in \code{lgb.Dataset}.
#'
#' @examples
#' library(lightgbm)
#' data(iris)
#'
#' str(iris)
#' # 'data.frame': 150 obs. of 5 variables:
#' # $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#' # $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#' # $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#' # $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#' # $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 ...
#'
#' new_iris <- lgb.prepare_rules2(data = iris) # Autoconverter
#' str(new_iris$data)
#' # 'data.frame': 150 obs. of 5 variables:
#' # $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#' # $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#' # $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#' # $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#' # $ Species : int 1 1 1 1 1 1 1 1 1 1 ...
#'
#' data(iris) # Erase iris dataset
#' iris$Species[1] <- "NEW FACTOR" # Introduce junk factor (NA)
#' # Warning message:
#' # In `[<-.factor`(`*tmp*`, 1, value = c(NA, 1L, 1L, 1L, 1L, 1L, 1L, :
#' # invalid factor level, NA generated
#'
#' # Use conversion using known rules
#' # Unknown factors become 0, excellent for sparse datasets
#' newer_iris <- lgb.prepare_rules2(data = iris, rules = new_iris$rules)
#'
#' # Unknown factor is now zero, perfect for sparse datasets
#' newer_iris$data[1, ] # Species became 0 as it is an unknown factor
#' # Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#' # 1 5.1 3.5 1.4 0.2 0
#'
#' newer_iris$data[1, 5] <- 1 # Put back real initial value
#'
#' # Is the newly created dataset equal? YES!
#' all.equal(new_iris$data, newer_iris$data)
#' # [1] TRUE
#'
#' # Can we test our own rules?
#' data(iris) # Erase iris dataset
Expand All @@ -58,12 +40,6 @@
#' "virginica" = 1L))
#' newest_iris <- lgb.prepare_rules2(data = iris, rules = personal_rules)
#' str(newest_iris$data) # SUCCESS!
#' # 'data.frame': 150 obs. of 5 variables:
#' # $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#' # $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#' # $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#' # $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#' # $ Species : int 3 3 3 3 3 3 3 3 3 3 ...
#'
#' @importFrom data.table set
#' @export
Expand Down
4 changes: 2 additions & 2 deletions R-package/R/readRDS.lgb.Booster.R
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
#' readRDS for lgb.Booster models
#' readRDS for \code{lgb.Booster} models
#'
#' Attempts to load a model using RDS.
#'
#' @param file a connection or the name of the file where the R object is saved to or read from.
#' @param refhook a hook function for handling reference objects.
#'
#' @return lgb.Booster.
#' @return \code{lgb.Booster}.
#'
#' @examples
#' library(lightgbm)
Expand Down
2 changes: 1 addition & 1 deletion R-package/R/saveRDS.lgb.Booster.R
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#' saveRDS for lgb.Booster models
#' saveRDS for \code{lgb.Booster} models
#'
#' Attempts to save a model using RDS. Has an additional parameter (\code{raw}) which decides whether to save the raw model or not.
#'
Expand Down
2 changes: 1 addition & 1 deletion R-package/man/dim.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

8 changes: 4 additions & 4 deletions R-package/man/getinfo.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

6 changes: 3 additions & 3 deletions R-package/man/lgb.Dataset.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion R-package/man/lgb.Dataset.create.valid.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 0 additions & 1 deletion R-package/man/lgb.Dataset.save.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading