Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[R-package] [docs] Simplified examples to cut example run time (fixes #2988) #2989

Merged
merged 3 commits into from
Apr 15, 2020
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 10 additions & 11 deletions R-package/R/lgb.Booster.R
Original file line number Diff line number Diff line change
Expand Up @@ -711,7 +711,6 @@ Booster <- R6::R6Class(
#' number of columns corresponding to the number of trees.
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand All @@ -723,11 +722,10 @@ Booster <- R6::R6Class(
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 10L
#' , nrounds = 5L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 5L
#' )
#' preds <- predict(model, test$data)
#' @export
Expand Down Expand Up @@ -769,7 +767,7 @@ predict.lgb.Booster <- function(object,
#' @return lgb.Booster
#'
#' @examples
#' library(lightgbm)
#' \donttest{
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand All @@ -781,17 +779,17 @@ predict.lgb.Booster <- function(object,
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 10L
#' , nrounds = 5L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 5L
#' , early_stopping_rounds = 3L
#' )
#' lgb.save(model, "model.txt")
#' load_booster <- lgb.load(filename = "model.txt")
#' model_string <- model$save_model_to_string(NULL) # saves best iteration
#' load_booster_from_str <- lgb.load(model_str = model_string)
#'
#' }
#' @export
lgb.load <- function(filename = NULL, model_str = NULL) {

Expand Down Expand Up @@ -828,6 +826,7 @@ lgb.load <- function(filename = NULL, model_str = NULL) {
#' @return lgb.Booster
#'
#' @examples
#' \donttest{
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
Expand All @@ -847,6 +846,7 @@ lgb.load <- function(filename = NULL, model_str = NULL) {
#' , early_stopping_rounds = 5L
#' )
#' lgb.save(model, "model.txt")
#' }
#' @export
lgb.save <- function(booster, filename, num_iteration = NULL) {

Expand Down Expand Up @@ -874,6 +874,7 @@ lgb.save <- function(booster, filename, num_iteration = NULL) {
#' @return json format of model
#'
#' @examples
#' \donttest{
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
Expand All @@ -893,7 +894,7 @@ lgb.save <- function(booster, filename, num_iteration = NULL) {
#' , early_stopping_rounds = 5L
#' )
#' json_model <- lgb.dump(model)
#'
#' }
#' @export
lgb.dump <- function(booster, num_iteration = NULL) {

Expand Down Expand Up @@ -922,7 +923,6 @@ lgb.dump <- function(booster, num_iteration = NULL) {
#'
#' @examples
#' # train a regression model
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand All @@ -934,11 +934,10 @@ lgb.dump <- function(booster, num_iteration = NULL) {
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 10L
#' , nrounds = 5L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 5L
#' )
#'
#' # Examine valid data_name values
Expand Down
11 changes: 0 additions & 11 deletions R-package/R/lgb.Dataset.R
Original file line number Diff line number Diff line change
Expand Up @@ -725,7 +725,6 @@ Dataset <- R6::R6Class(
#' @return constructed dataset
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand Down Expand Up @@ -770,7 +769,6 @@ lgb.Dataset <- function(data,
#' @return constructed dataset
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand All @@ -797,7 +795,6 @@ lgb.Dataset.create.valid <- function(dataset, data, info = list(), ...) {
#' @param dataset Object of class \code{lgb.Dataset}
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand Down Expand Up @@ -828,7 +825,6 @@ lgb.Dataset.construct <- function(dataset) {
#' be directly used with an \code{lgb.Dataset} object.
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand Down Expand Up @@ -863,7 +859,6 @@ dim.lgb.Dataset <- function(x, ...) {
#' Since row names are irrelevant, it is recommended to use \code{colnames} directly.
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand Down Expand Up @@ -936,7 +931,6 @@ dimnames.lgb.Dataset <- function(x) {
#' @return constructed sub dataset
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand Down Expand Up @@ -983,7 +977,6 @@ slice.lgb.Dataset <- function(dataset, idxset, ...) {
#' }
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand Down Expand Up @@ -1037,7 +1030,6 @@ getinfo.lgb.Dataset <- function(dataset, name, ...) {
#' }
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand Down Expand Up @@ -1078,7 +1070,6 @@ setinfo.lgb.Dataset <- function(dataset, name, info, ...) {
#' @return passed dataset
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand Down Expand Up @@ -1109,7 +1100,6 @@ lgb.Dataset.set.categorical <- function(dataset, categorical_feature) {
#' @return passed dataset
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package ="lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand Down Expand Up @@ -1141,7 +1131,6 @@ lgb.Dataset.set.reference <- function(dataset, reference) {
#' @return passed dataset
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand Down
6 changes: 2 additions & 4 deletions R-package/R/lgb.cv.R
Original file line number Diff line number Diff line change
Expand Up @@ -56,19 +56,17 @@ CVBooster <- R6::R6Class(
#' @return a trained model \code{lgb.CVBooster}.
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
#' params <- list(objective = "regression", metric = "l2")
#' model <- lgb.cv(
#' params = params
#' , data = dtrain
#' , nrounds = 10L
#' , nrounds = 5L
#' , nfold = 3L
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 5L
#' , learning_rate = 0.05
Laurae2 marked this conversation as resolved.
Show resolved Hide resolved
#' )
#' @importFrom data.table data.table setorderv
#' @export
Expand Down
8 changes: 5 additions & 3 deletions R-package/R/lgb.importance.R
Original file line number Diff line number Diff line change
Expand Up @@ -13,20 +13,22 @@
#' }
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
#'
#' params <- list(
#' objective = "binary"
#' , learning_rate = 0.01
Laurae2 marked this conversation as resolved.
Show resolved Hide resolved
#' , num_leaves = 63L
#' , max_depth = -1L
#' , min_data_in_leaf = 1L
#' , min_sum_hessian_in_leaf = 1.0
#' )
#' model <- lgb.train(params, dtrain, 10L)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' )
#'
#' tree_imp1 <- lgb.importance(model, percentage = TRUE)
#' tree_imp2 <- lgb.importance(model, percentage = FALSE)
Expand Down
8 changes: 5 additions & 3 deletions R-package/R/lgb.interprete.R
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@
#' Contribution columns to each class.
#'
#' @examples
#' Sigmoid <- function(x) 1.0 / (1.0 + exp(-x))
#' Logit <- function(x) log(x / (1.0 - x))
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
Expand All @@ -28,12 +27,15 @@
#' params <- list(
#' objective = "binary"
#' , learning_rate = 0.01
Laurae2 marked this conversation as resolved.
Show resolved Hide resolved
#' , num_leaves = 63L
#' , max_depth = -1L
#' , min_data_in_leaf = 1L
#' , min_sum_hessian_in_leaf = 1.0
#' )
#' model <- lgb.train(params, dtrain, 10L)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 3L
#' )
#'
#' tree_interpretation <- lgb.interprete(model, test$data, 1L:5L)
#'
Expand Down
10 changes: 6 additions & 4 deletions R-package/R/lgb.plot.importance.R
Original file line number Diff line number Diff line change
Expand Up @@ -25,16 +25,18 @@
#' params <- list(
#' objective = "binary"
#' , learning_rate = 0.01
Laurae2 marked this conversation as resolved.
Show resolved Hide resolved
#' , num_leaves = 63L
#' , max_depth = -1L
#' , min_data_in_leaf = 1L
#' , min_sum_hessian_in_leaf = 1.0
#' )
#'
#' model <- lgb.train(params, dtrain, 10L)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' )
#'
#' tree_imp <- lgb.importance(model, percentage = TRUE)
#' lgb.plot.importance(tree_imp, top_n = 10L, measure = "Gain")
#' lgb.plot.importance(tree_imp, top_n = 5L, measure = "Gain")
#' @importFrom graphics barplot par
#' @export
lgb.plot.importance <- function(tree_imp,
Expand Down
37 changes: 26 additions & 11 deletions R-package/R/lgb.plot.interpretation.R
Original file line number Diff line number Diff line change
Expand Up @@ -15,28 +15,43 @@
#' The \code{lgb.plot.interpretation} function creates a \code{barplot}.
#'
#' @examples
#' library(lightgbm)
#' Sigmoid <- function(x) {1.0 / (1.0 + exp(-x))}
#' Logit <- function(x) {log(x / (1.0 - x))}
#' \donttest{
#' Logit <- function(x) {
#' log(x / (1.0 - x))
#' }
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
#' setinfo(dtrain, "init_score", rep(Logit(mean(train$label)), length(train$label)))
#' labels <- agaricus.train$label
#' dtrain <- lgb.Dataset(
#' agaricus.train$data
#' , label = labels
#' )
#' setinfo(dtrain, "init_score", rep(Logit(mean(labels)), length(labels)))
#'
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#'
#' params <- list(
#' objective = "binary"
#' , learning_rate = 0.01
Laurae2 marked this conversation as resolved.
Show resolved Hide resolved
#' , num_leaves = 63L
#' , max_depth = -1L
#' , min_data_in_leaf = 1L
#' , min_sum_hessian_in_leaf = 1.0
#' )
#' model <- lgb.train(params, dtrain, 10L)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' )
#'
#' tree_interpretation <- lgb.interprete(model, test$data, 1L:5L)
#' lgb.plot.interpretation(tree_interpretation[[1L]], top_n = 10L)
#' tree_interpretation <- lgb.interprete(
#' model = model
#' , data = agaricus.test$data
#' , idxset = 1L:5L
#' )
#' lgb.plot.interpretation(
#' tree_interpretation_dt = tree_interpretation[[1L]]
#' , top_n = 5L
#' )
#' }
#' @importFrom data.table setnames
#' @importFrom graphics barplot par
#' @export
Expand Down
1 change: 0 additions & 1 deletion R-package/R/lgb.prepare.R
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@
#' for input in \code{lgb.Dataset}.
#'
#' @examples
#' library(lightgbm)
#' data(iris)
#'
#' str(iris)
Expand Down
1 change: 0 additions & 1 deletion R-package/R/lgb.prepare2.R
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@
#' for input in \code{lgb.Dataset}.
#'
#' @examples
#' library(lightgbm)
#' data(iris)
#'
#' str(iris)
Expand Down
1 change: 0 additions & 1 deletion R-package/R/lgb.prepare_rules.R
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@
#' in \code{lgb.Dataset}.
#'
#' @examples
#' library(lightgbm)
#' data(iris)
#'
#' str(iris)
Expand Down
1 change: 0 additions & 1 deletion R-package/R/lgb.prepare_rules2.R
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@
#' \code{lgb.Dataset}.
#'
#' @examples
#' library(lightgbm)
#' data(iris)
#'
#' str(iris)
Expand Down
5 changes: 2 additions & 3 deletions R-package/R/lgb.train.R
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
#' @return a trained booster model \code{lgb.Booster}.
#'
#' @examples
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
Expand All @@ -41,11 +40,11 @@
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 10L
#' , nrounds = 5L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 5L
#' , early_stopping_rounds = 3L
#' )
#' @export
lgb.train <- function(params = list(),
Expand Down
Loading