-
Notifications
You must be signed in to change notification settings - Fork 194
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
## Describe your changes Model quantization and evaluation on qnn [Bingsu/adetailer (face)](https://huggingface.co/Bingsu/adetailer) The remaining models (e.g. hand, person, etc.) will be added later. Use dataset([CUHK-CSE/wider_face](https://huggingface.co/datasets/CUHK-CSE/wider_face)) to evaluate the mAP50 & mAP50-100 Use `custom` metrics type and specific `metric_func`  A sample of this model:  ## Checklist before requesting a review - [ ] Add unit tests for this change. - [ ] Make sure all tests can pass. - [x] Update documents if necessary. - [x] Lint and apply fixes to your code by running `lintrunner -a` - [ ] Is this a user-facing change? If yes, give a description of this change to be included in the release notes. - [x] Is this PR including examples changes? If yes, please remember to update [example documentation](https://github.com/microsoft/Olive/blob/main/docs/source/examples.md) in a follow-up PR. ## (Optional) Issue link
- Loading branch information
1 parent
ba91e14
commit 34eb17a
Showing
7 changed files
with
350 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
## How to run | ||
### Pip requirements | ||
Install the necessary python packages: | ||
``` | ||
python -m pip install -r requirements.txt | ||
``` | ||
|
||
### Prepare models | ||
``` | ||
python prepare_onnx_model.py | ||
``` | ||
|
||
### Run sample using config | ||
``` | ||
olive run --config ./face_yolo_qnn.json | ||
``` | ||
|
||
**Note**: The special configuration of op_types_to_quantize in the face_yolo_qnn.json file is to exclude the mul operation. This is because after quantizing the mul operation, the latency of this model on the QNN will increase significantly. | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
{ | ||
"input_model": { "type": "ONNXModel", "model_path": "models/face/face_yolov9c.onnx" }, | ||
"systems": { | ||
"qnn_system": { | ||
"type": "LocalSystem", | ||
"accelerators": [ { "device": "npu", "execution_providers": [ "QNNExecutionProvider" ] } ] | ||
} | ||
}, | ||
"data_configs": [ | ||
{ | ||
"name": "face_data_config", | ||
"type": "HuggingfaceContainer", | ||
"user_script": "user_script.py", | ||
"load_dataset_config": { | ||
"data_name": "CUHK-CSE/wider_face", | ||
"split": "validation", | ||
"streaming": true, | ||
"trust_remote_code": true | ||
}, | ||
"pre_process_data_config": { "type": "face_pre_process", "size": 128, "cache_key": "wider_face" }, | ||
"dataloader_config": { "type": "no_auto_batch_dataloader" } | ||
} | ||
], | ||
"evaluators": { | ||
"common_evaluator": { | ||
"metrics": [ | ||
{ | ||
"name": "accuracy_qnn", | ||
"type": "custom", | ||
"data_config": "face_data_config", | ||
"sub_types": [ | ||
{ "name": "map 50", "priority": 1, "higher_is_better": true }, | ||
{ "name": "map 50-95", "priority": 2, "higher_is_better": true } | ||
], | ||
"user_config": { | ||
"user_script": "user_script.py", | ||
"metric_func": "face_metric", | ||
"inference_settings": { | ||
"onnx": { | ||
"session_options": { | ||
"extra_session_config": { "session.disable_cpu_ep_fallback": "1" } | ||
}, | ||
"execution_provider": "QNNExecutionProvider", | ||
"provider_options": [ { "backend_path": "QnnHtp.dll" } ] | ||
} | ||
} | ||
} | ||
}, | ||
{ | ||
"name": "accuracy_cpu", | ||
"type": "custom", | ||
"data_config": "face_data_config", | ||
"sub_types": [ | ||
{ "name": "map 50", "priority": 3, "higher_is_better": true }, | ||
{ "name": "map 50-95", "priority": 4, "higher_is_better": true } | ||
], | ||
"user_config": { | ||
"user_script": "user_script.py", | ||
"metric_func": "face_metric", | ||
"inference_settings": { "onnx": { "execution_provider": "CPUExecutionProvider" } } | ||
} | ||
}, | ||
{ | ||
"name": "latency_qnn", | ||
"type": "latency", | ||
"data_config": "face_data_config", | ||
"sub_types": [ { "name": "avg", "priority": 5 } ], | ||
"user_config": { | ||
"inference_settings": { | ||
"onnx": { | ||
"session_options": { | ||
"extra_session_config": { "session.disable_cpu_ep_fallback": "1" } | ||
}, | ||
"execution_provider": "QNNExecutionProvider", | ||
"provider_options": [ { "backend_path": "QnnHtp.dll" } ] | ||
} | ||
} | ||
} | ||
}, | ||
{ | ||
"name": "latency_cpu", | ||
"type": "latency", | ||
"data_config": "face_data_config", | ||
"sub_types": [ { "name": "avg", "priority": 6 } ], | ||
"user_config": { | ||
"inference_settings": { "onnx": { "execution_provider": "CPUExecutionProvider" } } | ||
} | ||
} | ||
] | ||
} | ||
}, | ||
"passes": { | ||
"QNNPreprocess": { "type": "QNNPreprocess" }, | ||
"OnnxQuantization": { | ||
"type": "OnnxStaticQuantization", | ||
"quant_preprocess": true, | ||
"data_config": "face_data_config", | ||
"activation_type": "QUInt16", | ||
"weight_type": "QUInt8", | ||
"calibrate_method": "MinMax", | ||
"op_types_to_quantize": [ | ||
"Reshape", | ||
"Transpose", | ||
"Softmax", | ||
"Add", | ||
"Split", | ||
"AveragePool", | ||
"Div", | ||
"Conv", | ||
"Sigmoid", | ||
"Slice", | ||
"MaxPool", | ||
"Sub", | ||
"Concat", | ||
"Resize" | ||
] | ||
} | ||
}, | ||
"host": "qnn_system", | ||
"target": "qnn_system", | ||
"evaluator": "common_evaluator", | ||
"cache_dir": "cache", | ||
"clean_cache": true, | ||
"output_dir": "models/face/output", | ||
"evaluate_input_model": true | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
# ------------------------------------------------------------------------- | ||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
# -------------------------------------------------------------------------- | ||
from pathlib import Path | ||
|
||
import torch | ||
from huggingface_hub import hf_hub_download | ||
from ultralytics import YOLO | ||
|
||
|
||
def download(model_name: str): | ||
models_dir = Path("./models", model_name.split("_")[0]) | ||
models_dir.mkdir(parents=True, exist_ok=True) | ||
hf_hub_download("Bingsu/adetailer", f"{model_name}.pt", local_dir=f"./{models_dir}/") | ||
yolo_model = YOLO(f"{models_dir}/{model_name}.pt") | ||
torch_model = yolo_model.model | ||
torch.save(torch_model, f"{models_dir}/{model_name}_pytorch.pt") | ||
yolo_model.export(format="onnx") | ||
|
||
|
||
download("face_yolov9c") | ||
download("hand_yolov9c") | ||
download("person_yolov8m-seg") | ||
download("deepfashion2_yolov8s-seg") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
pycocotools | ||
ultralytics |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
# ------------------------------------------------------------------------- | ||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
# -------------------------------------------------------------------------- | ||
from logging import getLogger | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import torch | ||
import torchvision.ops as ops | ||
from torch.utils.data import Dataset | ||
from torchmetrics.detection.mean_ap import MeanAveragePrecision | ||
|
||
from olive.data.registry import Registry | ||
|
||
logger = getLogger(__name__) | ||
|
||
# The number of boxes in the labels is not fixed. | ||
# If they are directly used as the return value of the FaceDataset, | ||
# an error will occur when performing torch.cat(targets, dim=0) later. | ||
# So, this cache is used as a workaround. | ||
# pylint: disable=global-statement | ||
_curlabels_np = None | ||
|
||
|
||
class FaceDataset(Dataset): | ||
def __init__(self, data): | ||
global _curlabels_np | ||
_curlabels_np = data["labels"] | ||
self.images_np = data["images"] | ||
|
||
def __len__(self): | ||
return min(len(self.images_np), len(_curlabels_np)) | ||
|
||
def __getitem__(self, idx): | ||
input_img = self.images_np[idx] | ||
input_img = np.transpose(input_img, (2, 0, 1)) | ||
input_img = np.expand_dims(input_img, axis=0).astype(np.float32) / 255.0 | ||
return {"images": input_img}, torch.tensor([idx], dtype=torch.int32) | ||
|
||
|
||
def face_get_boxes(output): | ||
confidence_threshold = 0.1 | ||
boxes = [] | ||
scores = [] | ||
|
||
for i in range(output.shape[1]): | ||
confidence = output[4, i] | ||
if confidence > confidence_threshold: | ||
x_center = output[0, i] | ||
y_center = output[1, i] | ||
width = output[2, i] | ||
height = output[3, i] | ||
|
||
x1 = int(x_center - width / 2) | ||
y1 = int(y_center - height / 2) | ||
x2 = int(x_center + width / 2) | ||
y2 = int(y_center + height / 2) | ||
boxes.append([x1, y1, x2, y2]) | ||
scores.append(confidence.item()) | ||
|
||
if len(boxes) == 0: | ||
return boxes, scores | ||
|
||
boxes = torch.tensor(boxes, dtype=torch.float32) | ||
scores = torch.tensor(scores, dtype=torch.float32) | ||
|
||
nms_threshold = 0.4 | ||
keep_indices = ops.nms(boxes, scores, nms_threshold) | ||
keep_indices = keep_indices.tolist() | ||
|
||
keep_boxes = [] | ||
keep_scores = [] | ||
for i in keep_indices: | ||
x1, y1, x2, y2 = boxes[i].int().tolist() | ||
keep_boxes.append([x1, y1, x2, y2]) | ||
keep_scores.append(scores[i]) | ||
|
||
return keep_boxes, keep_scores | ||
|
||
|
||
@Registry.register_pre_process() | ||
def face_pre_process(validation_dataset, **kwargs): | ||
cache_key = kwargs.get("cache_key") | ||
size = kwargs.get("size", 256) | ||
cache_file = None | ||
if cache_key: | ||
cache_file = Path(f"./cache/data/{cache_key}_{size}.npz") | ||
if cache_file.exists(): | ||
with np.load(Path(cache_file), allow_pickle=True) as data: | ||
return FaceDataset(data) | ||
|
||
images = [] | ||
labels = [] | ||
|
||
target_size = (640, 640) | ||
|
||
for i, sample in enumerate(validation_dataset): | ||
if i == size: | ||
break | ||
saved_img = sample["image"] | ||
original_width, original_height = saved_img.size | ||
saved_img = saved_img.resize(target_size) | ||
img_array = np.array(saved_img) | ||
images.append(img_array) | ||
|
||
bbox_list = sample["faces"]["bbox"] | ||
scaled_bbox_list = [] | ||
width_scale = target_size[0] / original_width | ||
height_scale = target_size[1] / original_height | ||
for bbox in bbox_list: | ||
x, y, w, h = bbox | ||
scaled_x = x * width_scale | ||
scaled_y = y * height_scale | ||
scaled_w = w * width_scale | ||
scaled_h = h * height_scale | ||
scaled_bbox_list.append([scaled_x, scaled_y, scaled_x + scaled_w, scaled_y + scaled_h]) | ||
labels.append(scaled_bbox_list) | ||
|
||
images_np = np.array(images) | ||
labels_np = np.array(labels, dtype=object) | ||
result_data = {"images": images_np, "labels": labels_np} | ||
|
||
if cache_file: | ||
cache_file.parent.resolve().mkdir(parents=True, exist_ok=True) | ||
np.savez(cache_file, **result_data) | ||
|
||
return FaceDataset(result_data) | ||
|
||
|
||
def face_metric(model_output, targets): | ||
prediction_data = [] | ||
target_data = [] | ||
|
||
for i, target in enumerate(targets): | ||
keep_boxes, keep_scores = face_get_boxes(model_output[0][i]) | ||
target_boxes = _curlabels_np[target] | ||
prediction_data.append( | ||
{ | ||
"boxes": torch.tensor(keep_boxes, dtype=torch.float32), | ||
"scores": torch.tensor(keep_scores, dtype=torch.float32), | ||
"labels": torch.zeros(len(keep_boxes), dtype=torch.int64), | ||
} | ||
) | ||
target_data.append( | ||
{ | ||
"boxes": torch.tensor(target_boxes, dtype=torch.float32), | ||
"labels": torch.zeros(len(target_boxes), dtype=torch.int64), | ||
} | ||
) | ||
|
||
iou_thresholds = torch.arange(0.5, 1, 0.05).tolist() | ||
metric = MeanAveragePrecision(iou_thresholds=iou_thresholds) | ||
metric.update(prediction_data, target_data) | ||
result = metric.compute() | ||
return {"map 50-95": result["map"], "map 50": result["map_50"]} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.