Skip to content
This repository has been archived by the owner on Jun 13, 2024. It is now read-only.

Commit

Permalink
misc update
Browse files Browse the repository at this point in the history
  • Loading branch information
Yangqing committed Oct 1, 2013
1 parent fb28244 commit 0a84d0b
Show file tree
Hide file tree
Showing 10 changed files with 280 additions and 206 deletions.
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,9 @@
*.pb.cc
*_pb2.py

# test files
# bin files
*.testbin
*.bin

# vim swp files
*.swp
4 changes: 2 additions & 2 deletions src/Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -79,8 +79,8 @@ $(PROTO_GEN_CC): $(PROTO_SRCS)
protoc $(PROTO_SRCS) --cpp_out=. --python_out=.

clean:
@- $(RM) $(NAME) $(TEST_BINS)
@- $(RM) $(OBJS) $(TEST_OBJS)
@- $(RM) $(NAME) $(TEST_BINS) $(PROGRAM_BINS)
@- $(RM) $(OBJS) $(TEST_OBJS) $(PROGRAM_OBJS)
@- $(RM) $(PROTO_GEN_HEADER) $(PROTO_GEN_CC) $(PROTO_GEN_PY)

distclean: clean
1 change: 1 addition & 0 deletions src/caffe/layers/loss_layer.cu
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@ Dtype MultinomialLogisticLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>

// TODO: implement the GPU version for multinomial loss


template <typename Dtype>
void EuclideanLossLayer<Dtype>::SetUp(
const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top) {
Expand Down
91 changes: 0 additions & 91 deletions src/caffe/layers/softmax_layer.cpp

This file was deleted.

181 changes: 181 additions & 0 deletions src/caffe/layers/softmax_layer.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
// Copyright 2013 Yangqing Jia

#include <algorithm>
#include <cfloat>
#include <vector>
#include <thrust/device_vector.h>

#include "caffe/layer.hpp"
#include "caffe/vision_layers.hpp"
#include "caffe/util/math_functions.hpp"

using std::max;

namespace caffe {

template <typename Dtype>
void SoftmaxLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {
CHECK_EQ(bottom.size(), 1) << "Softmax Layer takes a single blob as input.";
CHECK_EQ(top->size(), 1) << "Softmax Layer takes a single blob as output.";
(*top)[0]->Reshape(bottom[0]->num(), bottom[0]->channels(),
bottom[0]->height(), bottom[0]->width());
sum_multiplier_.Reshape(1, bottom[0]->channels(),
bottom[0]->height(), bottom[0]->width());
Dtype* multiplier_data = sum_multiplier_.mutable_cpu_data();
for (int i = 0; i < sum_multiplier_.count(); ++i) {
multiplier_data[i] = 1.;
}
scale_.Reshape(bottom[0]->num(), 1, 1, 1);
};

template <typename Dtype>
void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = (*top)[0]->mutable_cpu_data();
Dtype* scale_data = scale_.mutable_cpu_data();
int num = bottom[0]->num();
int dim = bottom[0]->count() / bottom[0]->num();
memcpy(top_data, bottom_data, sizeof(Dtype) * bottom[0]->count());
// we need to subtract the max to avoid numerical issues, compute the exp,
// and then normalize.
for (int i = 0; i < num; ++i) {
scale_data[i] = bottom_data[i*dim];
for (int j = 0; j < dim; ++j) {
scale_data[i] = max(scale_data[i], bottom_data[i * dim + j]);
}
}
// subtraction
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, dim, 1, -1.,
scale_data, sum_multiplier_.cpu_data(), 1., top_data);
// Perform exponentiation
caffe_exp<Dtype>(num * dim, top_data, top_data);
// sum after exp
caffe_cpu_gemv<Dtype>(CblasNoTrans, num, dim, 1., top_data,
sum_multiplier_.cpu_data(), 0., scale_data);
// Do division
for (int i = 0; i < num; ++i) {
caffe_scal<Dtype>(dim, Dtype(1.) / scale_data[i], top_data + i * dim);
}
}

template <typename Dtype>
__global__ void kernel_get_max(const int num, const int dim,
const Dtype* data, Dtype* out) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < num) {
Dtype maxval = -FLT_MAX;
for (int i = 0; i < dim; ++i) {
maxval = max(data[index * dim + i], maxval);
}
out[index] = maxval;
}
}

template <typename Dtype>
__global__ void kernel_softmax_div(const int num, const int dim,
const Dtype* scale, Dtype* data) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < num * dim) {
int n = index / dim;
data[index] /= scale[n];
}
}

template <typename Dtype>
__global__ void kernel_exp(const int num, const Dtype* data, Dtype* out) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < num) {
out[index] = exp(data[index]);
}
}

template <typename Dtype>
void SoftmaxLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {
const Dtype* bottom_data = bottom[0]->gpu_data();
Dtype* top_data = (*top)[0]->mutable_gpu_data();
Dtype* scale_data = scale_.mutable_gpu_data();
int num = bottom[0]->num();
int dim = bottom[0]->count() / bottom[0]->num();
CUDA_CHECK(cudaMemcpy(top_data, bottom_data,
sizeof(Dtype) * bottom[0]->count(), cudaMemcpyDeviceToDevice));
// we need to subtract the max to avoid numerical issues, compute the exp,
// and then normalize.
// Compute max
kernel_get_max<Dtype><<<CAFFE_GET_BLOCKS(num), CAFFE_CUDA_NUM_THREADS>>>(
num, dim, bottom_data, scale_data);
// subtraction
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, dim, 1, -1.,
scale_data, sum_multiplier_.gpu_data(), 1., top_data);
// Perform exponentiation
kernel_exp<Dtype><<<CAFFE_GET_BLOCKS(num * dim), CAFFE_CUDA_NUM_THREADS>>>(
num * dim, top_data, top_data);
// sum after exp
caffe_gpu_gemv<Dtype>(CblasNoTrans, num, dim, 1., top_data,
sum_multiplier_.gpu_data(), 0., scale_data);
// Do division
kernel_softmax_div<Dtype><<<CAFFE_GET_BLOCKS(num * dim), CAFFE_CUDA_NUM_THREADS>>>(
num, dim, scale_data, top_data);
}

template <typename Dtype>
Dtype SoftmaxLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const bool propagate_down,
vector<Blob<Dtype>*>* bottom) {
const Dtype* top_diff = top[0]->cpu_diff();
const Dtype* top_data = top[0]->cpu_data();
Dtype* bottom_diff = (*bottom)[0]->mutable_cpu_diff();
Dtype* scale_data = scale_.mutable_cpu_data();
int num = top[0]->num();
int dim = top[0]->count() / top[0]->num();
memcpy(bottom_diff, top_diff, sizeof(Dtype) * top[0]->count());
// Compute inner1d(top_diff, top_data) and subtract them from the bottom diff
for (int i = 0; i < num; ++i) {
scale_data[i] = caffe_cpu_dot<Dtype>(dim, top_diff + i * dim,
top_data + i * dim);
}
// subtraction
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, dim, 1, -1.,
scale_data, sum_multiplier_.cpu_data(), 1., bottom_diff);
// elementwise multiplication
caffe_mul<Dtype>(top[0]->count(), bottom_diff, top_data, bottom_diff);
return Dtype(0);
}

// TODO(Yangqing): implement the GPU version of softmax.
template <typename Dtype>
Dtype SoftmaxLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const bool propagate_down, vector<Blob<Dtype>*>* bottom) {
const Dtype* top_diff = top[0]->gpu_diff();
const Dtype* top_data = top[0]->gpu_data();
Dtype* bottom_diff = (*bottom)[0]->mutable_gpu_diff();
int num = top[0]->num();
int dim = top[0]->count() / top[0]->num();
CUDA_CHECK(cudaMemcpy(bottom_diff, top_diff,
sizeof(Dtype) * top[0]->count(), cudaMemcpyDeviceToDevice));
// Compute inner1d(top_diff, top_data) and subtract them from the bottom diff
// cuda dot returns the result to cpu, so we temporarily change the pointer
// mode
CUBLAS_CHECK(cublasSetPointerMode(Caffe::cublas_handle(),
CUBLAS_POINTER_MODE_DEVICE));
Dtype* scale_data = scale_.mutable_gpu_data();
for (int i = 0; i < num; ++i) {
caffe_gpu_dot<Dtype>(dim, top_diff + i * dim,
top_data + i * dim, scale_data + i);
}
CUBLAS_CHECK(cublasSetPointerMode(Caffe::cublas_handle(),
CUBLAS_POINTER_MODE_HOST));
// subtraction
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, dim, 1, -1.,
scale_.gpu_data(), sum_multiplier_.gpu_data(), 1., bottom_diff);
// elementwise multiplication
caffe_gpu_mul<Dtype>(top[0]->count(), bottom_diff, top_data, bottom_diff);
return Dtype(0);
}

INSTANTIATE_CLASS(SoftmaxLayer);


} // namespace caffe
Loading

0 comments on commit 0a84d0b

Please sign in to comment.