Webpage for the course Responsible Machine Learning at PhD school QPE@UW
We meet at 9 here: http://meet.drwhy.ai/
-
2021-03-02 Introduction to Responsible Machine Learning
-
2021-03-09 Project: topics selection
-
2021-03-16 If needed, let's talk a bit about tools, optional, no presentation planned
-
2021-03-23 Fairness - Legal perspective (Ethics) (Joanna R)
-
2021-03-30 Fairness - Introduction + Classification (Błażej P)
-
2021-04-13 Fairness - Testing discrimination (Anna B) (Krzysztof O) slides, jupiter notebook
-
2021-04-27 Project: first presentation
-
2021-05-04 Interpretability - Z Lipton (Konrad K)
-
2021-05-11 Interpretability - LIME (Stanislaw Ł)
-
2021-05-18 Interpretability - C Rudin (Sylwia W)
-
2021-05-25 Methods - Partial Dependence Plots (Pirapat P)
-
2021-06-01 Methods - Permutational Feature Importance (Mateusz B)
-
2021-06-08 Let's meet and conclude this semester
-
2021-06-15 Project: last presentation
- The Productivity–Pay Gap https://www.epi.org/productivity-pay-gap/
- The gap between wages and productivity https://blogs.lse.ac.uk/netuf/2018/05/24/the-gap-between-wages-and-productivity/
- ARTIFICIAL INTELLIGENCE AND THE MODERN PRODUCTIVITY PARADOX: A CLASH OF EXPECTATIONS AND STATISTICS https://www.nber.org/system/files/working_papers/w24001/w24001.pdf
- China: AI Governance Principles Released https://www.loc.gov/law/foreign-news/article/china-ai-governance-principles-released/
See https://pbiecek.github.io/xai_stories/
I expect you go though followng stepss
- Find an small but interesting dataset. If in doubt: https://github.com/pbiecek/InterpretableMachineLearning2020/issues
- Create an simple ML model
- Test fairness
- Try tools for explainability
- Prepare report / presentation
- Mateusz B. + Konrad K.
- Erita N. + Pirapat P. + Joanna R.
- Stanisław Ł. + Anna B.
- Sylwia W. + Błażej P.