Skip to content

mingfeima/convnet-benchmark-py

Repository files navigation

Convnet Performance Benchmark for PyTorch

usage

### the script runs on GPU when GPU is available, otherwise on CPU
### for training performance (batch mode)
./run.sh


### for inference performance
### you may choose to use 3 types of memory formats on PyTorch CPU:
### 1. NCHW memory format
###   ./run_inference.sh
###
### 2. NHWC memory format
###   ./run_inference.sh --channels_last
###
### 3. MKLDNN blocked memory format (with weight prepacking)
###   ./run_inference.sh --mkldnn

performance

Results on Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz, single soskcet 20 cores, jemalloc enabled.

Unit: (imgs/second)

Model NCHW (org) NHWC (opt)
alexnet 142.38 260.16
vgg11 24.14 75.37
inception_v3 14.58 45.74
resnet50 17.89 71.31
resnext101 3.5 24.12
squeezenet1_0 39.75 224.99
densenet121 16.03 36.2
mobilenet_v2 7.36 129.5
shufflenet 18.89 134.43
unet 27.15 51.59

About

PyTorch convnet performance benchmark

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published