- Ubuntu 20.04
- Pytorch 1.7.1
- Cuda Toolkit 11.2.2
This framework has been successfully tested on:
- CPU: Intel core i7 10th generation
- GPU: Nvidia RTX 3090 (this is not a requirement, any GPU with at least 12GB of VRAM should be enough)
- RAM: 32 GB DDR4
- Anaconda/Mini conda
- Latest Nvidia driver
- We recommend to set up the virtual environment by Mini Conda:
git clonehttps://github.com/minha12/IdDecoder.git
cd IdDecoder
conda env create -n iddecoder --file ./requirements.yaml
wget https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip
sudo unzip ninja-linux.zip -d /usr/local/bin/
sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force
- Install Cuda Toolkit 11.2.2
- Pytorch 1.7.1:
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
Prerequisites:
- Docker installed on your machine.
- NVIDIA GPU with the NVIDIA Container Toolkit (for GPU support).
- Clone the repository containing the Gradio app and Dockerfile to your local machine.
- Open a terminal or command prompt.
- Navigate to the directory containing the Dockerfile.
- Run the following command to build the Docker image:
docker build -t iddecoder_docker .
This command builds a Docker image named iddecoder_docker
from the Dockerfile in the current directory.
- Once the image is built, you can run the container with the following command:
docker run -d --gpus all -p 7860:7860 iddecoder_docker tail -f /dev/null
This command runs the container in detached mode (-d
), enables GPU access (--gpus all
), and maps port 7860
of the container to port 7860
on your host machine.
- If you need to stop the running Docker container, first find the container ID using:
docker ps
- Then stop the container using the following command:
Replace
docker stop [container_id]
[container_id]
with the actual ID of your container.