PyHillFit - python code to perform Bayesian inference of Hill curve parameters from dose-response data
Code to load dose-response data and fit dose Hill response curves in a Bayesian inference framework.
This code is associated with the paper "Hierarchical Bayesian inference for ion channel screening dose-response data". Wellcome Open Research 1:6. doi:10.12688/wellcomeopenres.9945.2.
N.B. The response should be the percentage inhibition.
The following python packages are pre-requisites for running PyHillFit
:
On most linux distributions you can install these via pip
, which itself can be installed, if it isn't already present, following the instructions on the pip homepage.
Then all the above dependencies can be installed in one go with:
sudo pip install numpy cma matplotlib scipy pandas seaborn
We have made a .csv file of the Crumb et al. dataset, which is available in the data
folder, together with some example python scripts for reading it. You can fit your own data by putting them into a similar format to this .csv
file. Note that doses/concentrations should be given in microMolar.
To run the python-based dose-response fitting code, see the README in the python
folder.
To run the Uncertainty Propagation example based on PyHillFit
output, see the README in the chaste
folder.