Skip to content

Commit

Permalink
Merge branch 'line_commands_integrated' of github.com:mitmedialab/prg…
Browse files Browse the repository at this point in the history
…-raise-playground into line_commands_integrated
  • Loading branch information
mayarajan3 committed Nov 19, 2024
2 parents d1ac252 + 4b8b16e commit ce2cbc9
Showing 1 changed file with 59 additions and 255 deletions.
314 changes: 59 additions & 255 deletions extensions/src/doodlebot/LineDetection.ts
Original file line number Diff line number Diff line change
Expand Up @@ -2,281 +2,85 @@ import { endpoint, port } from "./enums";
import axios from 'axios';

export class LineDetector {
private lastDetectedLine: number[][] = [];
private isProcessing = false;
private frameCount = 0;
private allCoordinates: number[][][] = [];

constructor(
private raspberryPiIp: string,
private width = 640,
private height = 480,
private threshold = 70 // Threshold for detecting dark pixels
) {
console.log(`LineDetector initialized with IP: ${raspberryPiIp}`);
console.log(`Parameters: width=${width}, height=${height}, threshold=${threshold}`);
}

async detectLine(): Promise<number[][]> {
if (this.isProcessing) {
console.log("Already processing, returning last detected line");
return this.lastDetectedLine;
}

console.log("Starting line detection...");
this.isProcessing = true;

try {
const url = `http://${this.raspberryPiIp}:${port.camera}/${endpoint.video}`;
console.log(`Fetching DEBUG image from: ${url}`);

const controller = new AbortController();
const timeout = setTimeout(() => {
controller.abort();
console.log("Fetch request timed out");
}, 5000);

try {
const response = await fetch(url, {
method: 'GET',
mode: 'cors',
headers: {
'Accept': 'multipart/x-mixed-replace; boundary=frame'
},
signal: controller.signal
});

clearTimeout(timeout);

if (!response.ok) {
console.error(`HTTP error! status: ${response.status}`);
throw new Error(`HTTP error! status: ${response.status}`);
}

console.log("Response received, getting reader...");
const reader = response.body?.getReader();
if (!reader) {
throw new Error('No reader available');
}

console.log("Reading stream...");
const { value, done } = await reader.read();

if (done || !value) {
throw new Error('Stream ended unexpectedly');
}

console.log(`Received chunk of size: ${value.length}`);
// Debug the first few bytes to see what we're getting
console.log("First 20 bytes:", Array.from(value.slice(0, 20)).map(b => b.toString(16).padStart(2, '0')).join(' '));

// Look for the multipart boundary
const data = new TextDecoder().decode(value);
console.log("First 100 chars of data:", data.substring(0, 100));

// Try to find the content-type header
const contentTypeMatch = data.match(/Content-Type: ([^\r\n]+)/i);
if (contentTypeMatch) {
console.log("Content-Type found:", contentTypeMatch[1]);
}

// Try to find the actual image data after headers
const headerEndIndex = data.indexOf('\r\n\r\n');
if (headerEndIndex !== -1) {
console.log("Headers found, image data starts at:", headerEndIndex + 4);
const blobData = value.slice(headerEndIndex + 4);

// Create blob from image data
const blob = new Blob([blobData], { type: 'image/jpeg' });
console.log("Created blob of size:", blob.size);

// Convert to image
const img = new Image();
const imageUrl = URL.createObjectURL(blob);

await new Promise((resolve, reject) => {
img.onload = resolve;
img.onerror = (e) => {
console.error("Image load error:", e);
reject(e);
};
img.src = imageUrl;
});

// Clean up the stream
reader.cancel();

console.log("Image loaded, dimensions:", img.width, "x", img.height);

// Create canvas to get pixel data
const canvas = document.createElement('canvas');
canvas.width = img.width;
canvas.height = img.height;
const ctx = canvas.getContext('2d');

if (!ctx) {
throw new Error('Could not get canvas context');
}

// Draw image to canvas
ctx.drawImage(img, 0, 0);

// Get pixel data
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
console.log("Got image data, processing pixels...");

// Process the image data
const lineCoordinates = this.processImageData(imageData.data);

// Clean up
URL.revokeObjectURL(imageUrl);

if (lineCoordinates.length > 0) {
this.lastDetectedLine = lineCoordinates;
}

return this.lastDetectedLine;
} else {
console.error("Could not find end of headers in response");
return this.lastDetectedLine;
}

} catch (fetchError) {
console.error("Fetch error:", fetchError);
if (fetchError.name === 'AbortError') {
console.log("Request was aborted due to timeout");
}
throw fetchError;
}
} catch (error) {
console.error('Error detecting line:', error);
return this.lastDetectedLine;
} finally {
this.isProcessing = false;
console.log("Line detection process completed");
}
private raspberryPiIp: string;
private width: number;
private height: number;
private canvas: HTMLCanvasElement;
private ctx: CanvasRenderingContext2D;
private lastDetectedLine: number[][];
private frameCount: number;
private allCoordinates: number[][][];
private threshold: number = 70;
private collectLine: boolean = false;

constructor(raspberryPiIp: string, width = 640, height = 480) {
this.raspberryPiIp = raspberryPiIp;
this.width = width;
this.height = height;
this.canvas = document.createElement('canvas');
this.canvas.width = width;
this.canvas.height = height;
this.ctx = this.canvas.getContext('2d')!;
this.lastDetectedLine = [];
this.frameCount = 0;
this.allCoordinates = [];
}

private processImageData(pixels: Uint8ClampedArray): number[][] {
private processImageData(imageData: ImageData): number[][] {
const lineCoordinates: number[][] = [];
const maxY = Math.min(this.height, 400);

console.log(`Processing image data: ${this.width}x${maxY}`);

// Parameters for line detection
const threshold = 70; // Threshold for dark pixels
const minBlueness = 150; // Minimum blue value for blue line detection
const colorDiffThreshold = 50; // Minimum difference between blue and other channels

// Store points by row for better line tracking
const pointsByRow: Map<number, number[]> = new Map();

// First pass: collect potential line points
for (let y = 0; y < maxY; y++) {
const rowPoints: number[] = [];

for (let x = 0; x < this.width; x++) {
const index = (y * this.width + x) * 4; // RGBA format
const r = pixels[index];
const g = pixels[index + 1];
const b = pixels[index + 2];

// For black line detection
const isBlack = r < threshold && g < threshold && b < threshold;

// For blue line detection
const isBlueDominant = b > minBlueness &&
b > (r + colorDiffThreshold) &&
b > (g + colorDiffThreshold);

if (isBlack || isBlueDominant) {
rowPoints.push(x);
}
}

if (rowPoints.length > 0) {
// Calculate median x-coordinate for this row to reduce noise
rowPoints.sort((a, b) => a - b);
const medianX = rowPoints[Math.floor(rowPoints.length / 2)];
pointsByRow.set(y, [medianX]);
}
}

// Second pass: Apply continuity constraints
let lastValidY = -1;
let lastValidX = -1;
const maxJump = 30; // Maximum allowed pixel jump between consecutive points

for (let y = 0; y < maxY; y++) {
const points = pointsByRow.get(y);
if (!points) continue;
const index = (y * this.width + x) * 4;
const r = imageData.data[index];
const g = imageData.data[index + 1];
const b = imageData.data[index + 2];

const x = points[0];

// Check if this point is a reasonable continuation of the line
if (lastValidY !== -1) {
const yGap = y - lastValidY;
const xGap = Math.abs(x - lastValidX);

// If point is too far from previous point, skip it
if (yGap > 2 || xGap > maxJump) {
continue;
if (r < this.threshold && g < this.threshold && b < this.threshold) {
lineCoordinates.push([x, y]);
}
}

// Add point to final line coordinates
lineCoordinates.push([x, y]);
lastValidY = y;
lastValidX = x;
}

// Sort coordinates by y-value (top to bottom)
const sortedCoordinates = lineCoordinates.sort((a, b) => a[1] - b[1]);

// Apply smoothing to reduce jagged edges
const smoothedCoordinates = this.smoothLine(sortedCoordinates);

return smoothedCoordinates;
return lineCoordinates.sort((a, b) => a[1] - b[1]);
}

private smoothLine(coordinates: number[][]): number[][] {
if (coordinates.length < 3) return coordinates;

const smoothed: number[][] = [];
const windowSize = 3;

// Keep first point
smoothed.push([...coordinates[0]]);
private loadImage(url: string): Promise<HTMLImageElement> {
return new Promise((resolve, reject) => {
const img = new Image();
img.crossOrigin = 'anonymous';
img.onload = () => resolve(img);
img.onerror = reject;
img.src = url;
});
}

// Smooth middle points
for (let i = 1; i < coordinates.length - 1; i++) {
const window = coordinates.slice(
Math.max(0, i - Math.floor(windowSize/2)),
Math.min(coordinates.length, i + Math.floor(windowSize/2) + 1)
);
async detectLine(): Promise<number[][]> {
try {
const image = await this.loadImage(`http://${this.raspberryPiIp}:${port.camera}/${endpoint.video}`);
this.ctx.drawImage(image, 0, 0, this.width, this.height);
const imageData = this.ctx.getImageData(0, 0, this.width, this.height);
const lineCoordinates = this.processImageData(imageData);

if (lineCoordinates.length > 0) {
this.lastDetectedLine = lineCoordinates;
}

const avgX = window.reduce((sum, point) => sum + point[0], 0) / window.length;
smoothed.push([Math.round(avgX), coordinates[i][1]]);
}
if (this.collectLine) {
this.allCoordinates.push(lineCoordinates);
this.frameCount++;
this.collectLine = false;
}

// Keep last point
if (coordinates.length > 1) {
smoothed.push([...coordinates[coordinates.length - 1]]);
return lineCoordinates;
} catch (error) {
console.error('Error detecting line:', error);
return [];
}

return smoothed;
}

private logCoordinates(): void {
console.log('=== Collected coordinates from 7 frames ===');
this.allCoordinates.forEach((frame, index) => {
console.log(`Frame ${index + 1}: ${frame.length} points`);
if (frame.length > 0) {
console.log('First 3 coordinates:', frame.slice(0, 3));
console.log('Last 3 coordinates:', frame.slice(-3));
}
});
}
// ... keep existing helper methods like loadImage, smoothLine, etc ...
}

export function createLineDetector(raspberryPiIp: string): () => Promise<number[][]> {
Expand Down

0 comments on commit ce2cbc9

Please sign in to comment.