Skip to content

Commit

Permalink
update(extensions): add support for IDM changes
Browse files Browse the repository at this point in the history
  • Loading branch information
jlarsen-usgs authored Dec 21, 2023
2 parents 959fe31 + f3ab857 commit de0aff9
Show file tree
Hide file tree
Showing 9 changed files with 241 additions and 1,336 deletions.
46 changes: 45 additions & 1 deletion .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,51 @@ jobs:
working-directory: ./autotest
shell: bash -l {0}
run: pytest -v -n auto -m "not mf6"


autotest_preidm_extensions:
name: modflowapi pre-idm extensions autotests
needs: lint
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, macos-latest, windows-latest ]
python-version: [ 3.8, 3.9, "3.10", "3.11" ]
defaults:
run:
shell: bash

steps:
# check out repo
- name: Checkout repo
uses: actions/checkout@v3

- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
cache-dependency-path: pyproject.toml

- name: Install Python dependencies
run: |
python -m pip install --upgrade pip
pip install git+https://[email protected]/Deltares/xmipy@develop
pip install git+https://[email protected]/MODFLOW-USGS/modflow-devtools@develop
pip install .[test]
- name: Install modflow executables
uses: modflowpy/install-modflow-action@v1
with:
path: ${{ github.workspace }}/autotest
repo: executables
tag: "14.0"

- name: Run autotests
working-directory: ./autotest
shell: bash -l {0}
run: pytest -v -n auto -m "not mf6"

autotest_mf6_examples:
name: modflowapi mf6 examples autotests
needs: lint
Expand Down
5 changes: 3 additions & 2 deletions autotest/test_interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
AdvancedPackage,
ArrayPackage,
ListPackage,
pkgvars
)

data_pth = Path("../examples/data")
Expand Down Expand Up @@ -120,10 +121,10 @@ def callback(sim, step):

factor = ((1 + sim.kstp) / sim.nstp) * 0.5
spd = sim.test_model.wel.stress_period_data.values
sim.test_model.wel.stress_period_data["flux"] *= factor
sim.test_model.wel.stress_period_data["q"] *= factor

spd2 = sim.test_model.wel.stress_period_data.values
if not np.allclose((spd["flux"] * factor), spd2["flux"]):
if not np.allclose((spd["q"] * factor), spd2["q"]):
raise AssertionError("Pointer not being set properly")

if sim.kper >= 3 and sim.kstp == 0:
Expand Down
2 changes: 1 addition & 1 deletion examples/data/disu_model/flow.ic
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ end options

BEGIN GRIDDATA
strt
INTERNAL FACTOR 1 IPRN
INTERNAL FACTOR 1 IPRN 3
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
Expand Down
2 changes: 1 addition & 1 deletion examples/data/two_models/model1.ic
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ end options

BEGIN GRIDDATA
strt
INTERNAL FACTOR 1.0 IPRN
INTERNAL FACTOR 1.0 IPRN 3
1.0 1.0 1.0 1.0 1.0 1.0 0.0
1.0 1.0 1.0 1.0 1.0 1.0 0.0
1.0 1.0 1.0 1.0 1.0 1.0 0.0
Expand Down
33 changes: 4 additions & 29 deletions examples/notebooks/Head_Monitor_Example.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "4526a124",
"metadata": {},
"outputs": [],
Expand All @@ -39,7 +39,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"id": "cdd38b59",
"metadata": {},
"outputs": [],
Expand Down Expand Up @@ -186,35 +186,10 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "f2902aff",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Solving: Stress Period 12; Timestep 31\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAHWCAYAAAAVVNJFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoOklEQVR4nO3df7Bdd3nf+/fnHMmSZfmHhGMfXdsEQ1WCTYIhGgcMcQEbLGgGQ6fMODMhVkND/jAttJlp7XamtMO442Zo087cCzNKSOV7k0JdkhQPN9fYiBBKCLgyNmDZGAvbGGHJAmMb/5IsnfPcP/ZSOBhJZ1s+Z/3Y5/2a2bP3XnvttZ/vPnvv5zzf9V3flapCkiQtbKrrACRJGgqTpiRJYzJpSpI0JpOmJEljMmlKkjQmk6YkSWMyaUqSJl6SDyS5M8nOJB9slv3bJN9PckdzeftC21mx5JFKktShJK8Efhu4EHgWuCnJ/9s8/PtV9ZFxt2XSlCRNulcAX6mqpwGS/BXwruPZkN2zkqRJdydwcZIXJVkDvB04p3ns/Um+keSPkqxbaEPpwzR6a9asqTVr1nQdBgArV64E4ODBgx1HMrJy5UqSMDubrkNhenr0WelDLGA8C+lTPH2KBUbxVFWvvufQj9+dlStXsnfv3h9W1c8txfYve9NJ9ciPZhd9u7d948BOYP+8RVurauvhO0neC1wFPAncBTwDXAf8ECjgw8CGqvqtY71OL7pn16xZwyOPPNJ1GABs2bIFgG3btnUax2FbtmzhtHXn8vVvntB1KLzqF58F6EUsYDwL6VM8fYoFRvE89uj9vfqeQz9+d7Zs2cK2bdu+u1Tbf+RHs9z62Rcv+nanN9y7v6o2He3xqvo48HGAJP8e2F1VDx9+PMkfAJ9Z6HV6kTQlSctDAXPMtf66Sc6oqn1JXgz8A+B1STZU1Z5mlXcx6sY9JpOmJKlFxWy1nzSBP03yIuAgcFVVPZrk/0lyAaNc/gDwOwttxKQpSZp4VfWrR1j2nue7HZOmJKk1o+7Z7gegHi8POZEkaUxWmpKkVnUxEGixmDQlSa0pitkezA9wvOyelSRpTFaakqRWORBIkqRlwEpTktSaAmatNCVJmnxWmpKkVg15n6ZJU5LUmgIPOZEkaTmw0pQktWq48wFZaUqSNDYrTUlSa4oa9CEnJk1JUnsKZoebM8frnk1yWpJPJflWkruTvC7J+iS3JLm3uV43b/1rkuxKck+Sy5YufEmS2jPuPs3/AtxUVb8AvAq4G7ga2F5VG4HtzX2SnAdcAZwPbAY+mmR6sQOXJA3P6CTUi39py4JJM8kpwMXAxwGq6tmqegy4HLi+We164J3N7cuBT1bVgaq6H9gFXLi4YUuS1L5x9mm+FPgB8F+TvAq4DfgAcGZV7QGoqj1JzmjWPwv4yrzn726WSZKWvTBLug7iuI3TPbsCeA3wsap6NfAUTVfsURzp3fiZ3b5J3pdkR5IdY0UqSRq8AuZq8S9tGSdp7gZ2V9VXm/ufYpREH06yAaC53jdv/XPmPf9s4KHnbrSqtlbVpqradLzBS5LUpgWTZlXtBb6X5OXNokuAu4AbgSubZVcCn25u3whckWRVknOBjcCtixq1JGmwZpsu2sW8tGXc4zT/CfAnSU4A7gP+EaOEe0OS9wIPAu8GqKqdSW5glFgPAVdV1eyiRy5JUsvGSppVdQdwpG7US46y/rXAtccfliRpEo1OQj3cgUDOCCRJatVcDTdpOmG7JEljstKUJLVm6N2zVpqSJI3JSlOS1JoizA64Xhtu5JIktcxKU5LUqiGPnjVpSpJa40AgSZKWCStNSVKLwmwNt14bbuSSJLXMSlOS1JoC5gZcr6WqxbN3HsWGDRtq8+bNXYcBwMzMDAB79+7tOJKRmZkZVqxYzZNPdb/jfO1Jo89KH2IB41lIn+LpUywwiufQof29+p5DP353ZmZmuO66625bqnMdv/yXVtfHbvz5Rd/uJed+e8lins9K8wimVq9m9cte1nUYAEzNzjJX8Oza7v8zm5saneHt4EndxwIwNz0LBQfX9CSew+9Pn+JJP/5ec9Oj9+bZk7uPBWAus0ytWM3qv/PSrkMBYOrQHHP793cdhsbQi6R58OBBtm3b1nUYAGzZsoXVL3sZn127putQALjsyaeZeha+8OxJXYfCG094ihR88cnuYwG4eO1TUPC/nuhHPL968lNAz+IJfPGp7uO5+KSnqCn4y4PdxwLwppVPMbey+OzJPfmeP/E0+/fu7cXv4JYtW5Z0+1UOBJIkaVnoRaUpSVo+5gY8uYFJU5LUmtGMQMPt5Bxu5JIktcxKU5LUIgcCSZK0LFhpSpJaM/QZgYYbuSRJLbPSlCS1ataTUEuStLAiHnIiSdJyYKUpSWrVnIecSJI0+aw0JUmtGfo0eiZNSVJrigx69Oxw070kSS2z0pQktcoZgSRJWgasNCVJrali0Gc5MWlKkloU5nAgkCRJE89KU5LUmmLY3bPDjVySpJZZaUqSWjXkGYGGG7kkSS2z0pQktaYIcwOeRs+kKUlqld2zkiQtA1aakqTWFJ6EWpKkZcFKU5LUojA74Gn0TJqSpNbYPStJ0jJhpSlJatWQu2etNCVJGpOVpiSpNVUZ9D5Nk6YkqVWeGkySpGXApClJak0Bc2TRLwtJ8oEkdybZmeSDzbL1SW5Jcm9zvW6h7Zg0JUkTLckrgd8GLgReBfxako3A1cD2qtoIbG/uH5P7NCVJLUoX+zRfAXylqp4GSPJXwLuAy4E3NutcD3wB+JfH2lAvkubKlSvZsmVL12EAMDMzw9TsLJc9+XTXoQCwfnYWpuCNJzzVdSicNjULwMVru48F4NTpWSj41ZN7FA89iydw8Undx3P4vXnTyu5jATgts3AILnuiJ9/zQ3PMzcz04ndwZmam6xCWwp3AtUleBDwDvB3YAZxZVXsAqmpPkjMW2lAvkiZTYfV5L+k6CgCm9kMV1Iq5rkMBoOYgwNyq6joUODS6ml3VbRh/axYIzPbjUwzNR6Z38fTh7zULFZhd0YPPMVDNZ7n6Es8sTK1ZzYk9+B2c2r+02x9No7ckkxucnmTHvPtbq2orQFXdneQ/ALcATwJf529/0Z6fXny9ZwO3/Px012EA8JbvzlKz4aaZPvzSwOa9B8hsuOnUNV2HwubHn4YKnz2p+1gALnvqaSi4+cR+xPPWZ0ZVS6/iCb34e1321NPUVHHTaSd2HQoAmx97BqaLmzb05Hu+5wBTU8Xnzu1+mMml9y99wbBEJ6H+YVVtOtqDVfVx4OMASf49sBt4OMmGpsrcAOxb6EXGijzJA0m+meSOw5n8WKOOklyTZFeSe5JcNs5rSJK0VA53vSZ5MfAPgE8ANwJXNqtcCXx6oe08n0rzTVX1w3n3D486ui7J1c39f5nkPOAK4Hzg/wA+l+TvVtXs83gtSdIEKrJU3bML+dNmn+ZB4KqqejTJdcANSd4LPAi8e6GNvJDu2aONOroc+GRVHQDuT7KL0TDfv3kBryVJ0nGrql89wrJHgEuez3bG7Vgu4OYktyV5X7Psp0YdAYdHHZ0FfG/ec3c3yyRJYo6pRb+0ZdxK8/VV9VDTJ3xLkm8dY90j1d0/M0StSb7vAzh95swxw5AkDVkVzHbTPbsoxkrPVfVQc70P+HNG3a0PN6ONeM6oo93AOfOefjbw0BG2ubWqNlXVpkx3P2JMkqSFLJitkpyU5OTDt4G3MjpQ9Gijjm4ErkiyKsm5wEbg1sUOXJI0THOVRb+0ZZzu2TOBP09yeP3/VlU3JfnfHGHUUVXtTHIDcBejg0evcuSsJGkSLJg0q+o+RhPcPnf5UUcdVdW1wLUvODpJ0kQZHXIy3F1yvZgRSJK0fMyOcSqvvhpuupckqWVWmpKk1izhhO2tsNKUJGlMVpqSpBYNeyDQcCOXJKllVpqSpFbNDXj0rElTktSaZTH3rCRJstKUJLXMgUCSJC0DVpqSpNaM5p4d7j5Nk6YkqVVDHj1r96wkSWOy0pQktca5ZyVJWiasNCVJrRryIScmTUlSe2rYo2eHm+4lSWqZlaYkqTWFh5xIkrQsWGlKklrlPk1JkpYBK01JUmuGPrmBSVOS1KohJ027ZyVJGpOVpiSpNUM/NZiVpiRJY7LSlCS1asiTG5g0JUntKQcCSZK0LPSi0pwueMt3Z7sOA4D1+6Gq2Lz3QNehALD+2SJVbH786a5DYf2hOQAue6r7WADWz44+M299pifxzPUznj78vdbPzlJzsPmxZ7oOBWg+y4dg856efM8PFAlcev9c16Gwbv/Sbt/jNBdJevQeJpDp6joMYN77sqIH8cyOPvC1ovsvNkA1YdTKHrw3QD3bXPcunu7/XjXXfK/68DkG0vyPPjXVk3jy09fqr14kzdkp+PxL+/FpefN9RRXc8vPTXYcCNBX4XLjp7JVdh8Lm3Qepgps2rOo6FOBwlRBuOrMn8Tw8qlr+vzP6Ec/b9h2AVC/+Xpv3HCCBz57di58cLtt9iKS45SU9+Z4/MEsCn39Z15HAm7+z9K9hpSlJ0hg8TlOSpGXCSlOS1Kqy0pQkafJZaUqSWjXkGYGsNCVJGpOVpiSpNTXwafRMmpKkVjkQSJKkZcBKU5LUIic3kCRpWbDSlCS1asj7NE2akqTWDP3UYHbPSpI0JitNSVJ7anSs5lBZaUqSNCYrTUlSq4Y896xJU5LUmmLYo2ftnpUkaUxWmpKkFjkjkCRJy4KVpiSpVR5yIknSMmClKUlq1ZBHz5o0JUmtqRp20rR7VpKkMY2dNJNMJ7k9yWea++uT3JLk3uZ63bx1r0myK8k9SS5bisAlScM0V1n0S1ueT6X5AeDuefevBrZX1UZge3OfJOcBVwDnA5uBjyaZXpxwJUnqzlhJM8nZwN8H/nDe4suB65vb1wPvnLf8k1V1oKruB3YBFy5KtJKkwata/Etbxq00/zPwL4C5ecvOrKo9AM31Gc3ys4DvzVtvd7PspyR5X5IdSXbUobnnPixJmlBVWfRLWxZMmkl+DdhXVbeNuc0jRf8z/wdU1daq2lRVm7LC8UiSpP4b55CT1wPvSPJ2YDVwSpI/Bh5OsqGq9iTZAOxr1t8NnDPv+WcDDy1m0JKkYSrarQwX24IlXlVdU1VnV9VLGA3w+XxV/QZwI3Bls9qVwKeb2zcCVyRZleRcYCNw66JHLklSy17I5AbXATckeS/wIPBugKrameQG4C7gEHBVVc2+4EglSRNhwFPPPr+kWVVfAL7Q3H4EuOQo610LXPsCY5MkTRpnBJIkaXlw7llJUrsG3D9rpSlJ0phMmpKkVnUxuUGSf5ZkZ5I7k3wiyeok/zbJ95Pc0VzevtB27J6VJLWqzWnvAJKcBfxT4LyqeqY5wuOK5uHfr6qPjLstK01J0nKwAjgxyQpgDcc56U4vKs3pOXjzff3YM7zumdH1W77bj0NL1+8Hqti8+2DXobD+QFHA5j0Hug4FgPXPFlBsfrgv8YzmUH7bvn7F04e/1/oDRQKX7T7UdSjAKB6AtzzQj+/5uv2j6zd/p9s4AE57Zmm3X7R/yElVfT/JRxjNKfAMcHNV3ZzkIuD9SX4T2AH8blU9eqxt9SJpAqRnw6mm+nQYUUKme/D+ZDSx8FQfYgHS/I2mpvsx4X9/4+n+7/W3sUx1H8tP1N/G1Rd9i2dgTk+yY979rVW1FaA53/PlwLnAY8D/SPIbwMeADzPK5R8G/iPwW8d6kV4kzdkp+MLGrqMYeeO9o+u//DvdxnHYm3aN/pqff2n336Y331dQ8LmX9qNX/9L7Rsnplpf043Sth6uWz53bk/fn/jkIbO/BZ+eS+4oAn39Z15GMHK7o+vS7k8Bfbez+n4q/d+8Sf14KWJpK84dVtekoj10K3F9VPwBI8mfARVX1x4dXSPIHwGcWepF+fLslSVo6DwKvTbImSRjNZnd3c7KRw94F3LnQhnpRaUqSlo+2R89W1VeTfAr4GqM50W8HtgJ/mOQCRvXvA8DvLLQtk6YkqV0d9EJX1YeADz1n8Xue73bsnpUkaUxWmpKkFk34SaglSdKIlaYkqV3dH1lz3EyakqT2eBJqSZKWBytNSVK7Btw9a6UpSdKYrDQlSS0b7j5Nk6YkqV12z0qSNPmsNCVJ7bLSlCRp8llpSpLas3QnoW6FlaYkSWOy0pQktartk1AvJpOmJKldA06ads9KkjQmK01JUrscCCRJ0uSz0pQktSoD3qdp0pQktadwIJAkScuBlaYkqUVxIJAkScuBlaYkqV0D3qdp0pQktWvASdPuWUmSxmSlKUlql5WmJEmTz0pTktQeT0ItSdLyYKUpSWqVc89KkjSuASdNu2clSRqTSVOSpDGZNCVJGlMv9mlOz8Eb7+06ipHTnhldv2lXt3EcdjieN9/X/U6AdU0sl943120gjXX7R9dveWC220Aah+O59P5+vT+X9Oiz8+bvdBvHYYe/V3373fl793Z/KMapTy/9azgQaBGk+8/KT+lTPEkxPdX9pywJVTDVs/4J4zm6hN58dgCmehAL9DOe6kco7RjwcZq9SJqzU/ClX+hHtfCGb00D/YonKf66B/G8/lvTVKVX7w3AF/9uPyq7i789ypZ9en+S4suvONR1KFx09+inpg+xwE/i6cP3Cvr13Tr8vdKR9SJpSpKWicJDTiRJWg6sNCVJ7RpwpWnSlCS1asijZ+2elSRpTFaakqR2WWlKkjT5FkyaSVYnuTXJ15PsTPLvmuXrk9yS5N7met2851yTZFeSe5JctpQNkCQNTC3BpSXjVJoHgDdX1auAC4DNSV4LXA1sr6qNwPbmPknOA64Azgc2Ax9N4tGykqTBWzBp1siTzd2VzaWAy4Hrm+XXA+9sbl8OfLKqDlTV/cAu4MLFDFqSNEyppbm0Zax9mkmmk9wB7ANuqaqvAmdW1R6A5vqMZvWzgO/Ne/ruZpkkSaO5Zxf70pKxkmZVzVbVBcDZwIVJXnmM1Y8U/c/8H5DkfUl2JNlRh/oxd6gkScfyvEbPVtVjwBcY7at8OMkGgOZ6X7PabuCceU87G3joCNvaWlWbqmpTVjiIV5KWjUkeCJTk55Kc1tw+EbgU+BZwI3Bls9qVwKeb2zcCVyRZleRcYCNw6yLHLUlS68aZ3GADcH0zAnYKuKGqPpPkb4AbkrwXeBB4N0BV7UxyA3AXcAi4qqq6P9+NJKkXhjyN3oJJs6q+Abz6CMsfAS45ynOuBa59wdFJkibPgJOmOxMlSRqTc89KktrT8nGVi81KU5KkMVlpSpLaNeBK06QpSWrXgJOm3bOSJI3JSlOS1CoHAkmStAyYNCVJGpNJU5KkMblPU5LUrgHv0zRpSpLa44xAkiQtD1aakqR2WWlKkjT5rDQlSe0acKVp0pQktSY4EEiSpGXBSlOS1C4rTUmSJp+VpiSpPQOf3MCkKUlq14CTpt2zkqSJl+SfJdmZ5M4kn0iyOsn6JLckube5XrfQdkyakqR21RJcjiHJWcA/BTZV1SuBaeAK4Gpge1VtBLY394/JpClJWg5WACcmWQGsAR4CLgeubx6/HnjnOBvp3PQcvOFb012HAcCpT4+u+xRPEl7fg3hOfTpU9eu9Abj42/3436+vn52L7u7+a37q0wHoRSzwk3j68L2Cfn23Dn+Ol1LbA4Gq6vtJPgI8CDwD3FxVNyc5s6r2NOvsSXLGQtvqxycYmOrJcKpk9GWanprrOJKRZJQQptOHeKaZCpwwPdt1IABMZRqonsXTt/cHVk51H0+YBsKKvnyvmKboz+8OhKQf8Rz+DRyg05PsmHd/a1VtBWj2VV4OnAs8BvyPJL9xPC/Si6Q5NwV/84qDXYcBwOvuXklS3Hr+s12HAsCFO08gFHf80jNdh8IF3ziRqcA3L3iy61AA+MU71gLFzlf3I57zb18LYDxHcP7taynCHb/UQhkzhgu+sYa5CjteeaDrUADYdOcqqsJXzuv+d/C1d61c+hdZmv8NflhVm47y2KXA/VX1A4AkfwZcBDycZENTZW4A9i30Iv3o15IkLQ9LMQho4ST8IPDaJGsyKqUvAe4GbgSubNa5Evj0QhvqRaUpSdJSqaqvJvkU8DXgEHA7sBVYC9yQ5L2MEuu7F9qWSVOS1Koudt1W1YeADz1n8QFGVefY7J6VJGlMVpqSpHZ1P0j4uJk0JUmt6sGRNcfN7llJksZkpSlJapeVpiRJk89KU5LUnvEmI+gtk6YkqTVpLkNl96wkSWOy0pQktWvA3bNWmpIkjclKU5LUKic3kCRpGbDSlCS1a8CVpklTktSuASdNu2clSRqTlaYkqT3lQCBJkpYFK01JUrsGXGmaNCVJrbJ7VpKkZcBKU5LULitNSZImn5WmJKlVQ96nadKUJLWnsHtWkqTlwEpTktQuK01JkibfgkkzyTlJ/jLJ3Ul2JvlAs3x9kluS3Ntcr5v3nGuS7EpyT5LLlrIBkqThCKOBQIt9acs4leYh4Her6hXAa4GrkpwHXA1sr6qNwPbmPs1jVwDnA5uBjyaZXorgJUlq04JJs6r2VNXXmttPAHcDZwGXA9c3q10PvLO5fTnwyao6UFX3A7uACxc5bknSUNUSXFryvAYCJXkJ8Grgq8CZVbUHRok1yRnNamcBX5n3tN3NMkmSSA13JNDYA4GSrAX+FPhgVf34WKseYdnPvENJ3pdkR5Idc4fmxg1DkqTOjJU0k6xklDD/pKr+rFn8cJINzeMbgH3N8t3AOfOefjbw0HO3WVVbq2pTVW2aWuEgXklaFpaia7ZPA4GSBPg4cHdV/ad5D90IXNncvhL49LzlVyRZleRcYCNw6+KFLElSN8bZp/l64D3AN5Pc0Sz7V8B1wA1J3gs8CLwboKp2JrkBuIvRyNurqmp2sQOXJA3TRM89W1Vf4sj7KQEuOcpzrgWufQFxSZIm1SQnzTZMzcHr7l7ZdRgAnPJ0gHDhzhO6DgWAk58a9aBf8I0TO44E1j41TYBfvGNt16EAcNKT00Bx/u19igfjOYJRLOGCb6zpOhQA1j45TQGb7lzVdSjAT77nr72r+9/B0W+gjqYXSRMgvanXQyhWTPVjRG8ICaxecajrUJjKFKE4ccWzXYcCwFRGP3hrVhzsOJKR0fsDJ/Xk/ZnOaop+vD9TmaKAVdPdf44BkikoWNmj73mRnvwOLn3S7EUzj1MvkubcFOx45YGuwwBG/3mumJrjW68+1lE17fmF209h5dQse35l38IrL7ENXz2D6czx6EXf7zoUANZ9+SwCPPH6B7sOBYCT//rFhOLJN/QjnrVfejFFePyi3V2HwqlfPptDNdWLzzGMPsuH5qa55zWPdx0KAC//2qkcnJvitl/c33Uo/PI3V3cdQq/1ImlKkpYRK01JksbQ8gTri81ZBSRJGpOVpiSpXVaakiRNPitNSVJrDp+EeqhMmpKkdi2HU4NJkrTcWWlKklo15O5ZK01JksZkpSlJak/LJ41ebFaakiSNyUpTktSq9OPkMsfFpClJapfds5IkTT4rTUlSqzzkRJKkZcBKU5LUnmLQ0+iZNCVJrbJ7VpKkZcBKU5LULitNSZImn5WmJKk1noRakqRxVQ169Kzds5IkjclKU5LUqiF3z1ppSpI0JitNSVK7rDQlSZp8VpqSpFYNeZ+mSVOS1J4C5oabNe2elSRpTFaakqR2DbfQtNKUJGlcVpqSpFY5EEiSpHE596wkSZPPSlOS1Cq7ZyVJ6qkkLwf++7xFLwX+DXAa8NvAD5rl/6qq/uJY2zJpSpLaU7R+yElV3QNcAJBkGvg+8OfAPwJ+v6o+Mu62TJqSpNYESLcDgS4BvlNV303yvJ/ci6Q5NQeb7lzVdRgAnPzUFCH8wu2ndB0KAGuemCaZZsNXz+g6FE748QmEYt2Xz+o6FABWPD76zJz81y/uOJKR6cdXEWDtl/oSz2oKOPXLZ3cdCtOPr2KK9OJzDKPP8sqCl3/t1K5DAeDEJ6ZZTfjlb67uOhROfmrix4deAXxi3v33J/lNYAfwu1X16LGe3IukyVzx4298r+soAFgzM8MJa1eyaupQ16EAMJUppjPH6ulnug6FQ5keJYXpp7sOBYD9WQkUJ694qutQAHgmo6/T2hX9eH+eyUogvfh77c9KCnrxOYbRZ3mWKVZNH+w6FGD0PX/2yWf58Xf2dh0Ka2Zmlv5F5pZkq6cn2THv/taq2jp/hSQnAO8ArmkWfQz4MKMO4w8D/xH4rWO9SC+S5sGDB9m2bVvXYQCwZcsWNrzmTH500fe7DgWA9V8+i1XT+3nRJbd3HQqPbH81KzPLS9765a5DAeCBmy8iKTa+9UtdhwLAvTe/AaBX8VSlF3+vB26+iIM13YvPMYw+ywfmVvFoT77n6758Fnt37evF7+CWLVu6DuF4/bCqNi2wztuAr1XVwwCHrwGS/AHwmYVepBdJU5K0fHS4T/PXmdc1m2RDVe1p7r4LuHOhDZg0JUkTL8ka4C3A78xb/HtJLmDUPfvAcx47IpOmJKk9HRxyAlBVTwMves6y9zzf7Zg0JUktKueelSRpObDSlCS1ashzz1ppSpI0JitNSVK7BrxP06QpSWpPQZZmRqBW2D0rSdKYrDQlSe0acPeslaYkSWOy0pQktWu4hebClWaSP0qyL8md85atT3JLknub63XzHrsmya4k9yS5bKkClyQNU6oW/dKWcbpntwGbn7PsamB7VW0Etjf3SXIeoxN8nt8856NJphctWkmSOrRg0qyqLwI/es7iy4Hrm9vXA++ct/yTVXWgqu4HdgEXLk6okqSJULX4l5Yc70CgMw+fg6y5PqNZfhbwvXnr7W6W/Ywk70uy4zln2pYkqbcWe/RsjrDsiP8CVNXWqto0xpm2JUmTooC5Jbi05HiT5sNJNsDozNfAvmb5buCceeudDTx0/OFJktQfx5s0bwSubG5fCXx63vIrkqxKci6wEbj1hYUoSZoUYfFHzrY5enbB4zSTfAJ4I3B6kt3Ah4DrgBuSvBd4EHg3QFXtTHIDcBdwCLiqqmaXKHZJ0hANeEagBZNmVf36UR665CjrXwtc+0KCkiSpj5wRSJLUrgFXms49K0nSmKw0JUntOXzIyUCZNCVJrWpztOtis3tWkqQxWWlKktplpSlJ0uSz0pQktajds5IsNpOmJKk9xaCTpt2zkiSNyUpTktSuAR+naaUpSdKYrDQlSa1ycgNJkpYBK01JUrsGXGmaNCVJ7SlgbrhJ0+5ZSZLGZKUpSWrRsGcESvUg+A0bNtTmzZu7DgOAmZkZTli7koOnPNt1KACs/PEJTGeOFac92XUoHHpsLQFWr3u861AA2P/oqUBx4vp+xPPMj04F6Fk86cXfa/+jp1LQi88xjD7LszXFoVMPdB0KACseX8WzTx5k7969XYfCzMwM11133W1VtWkptn/q6pm66MVXLvp2b7r395Ys5vmsNI/g2ScPsnfXw12HAYw+wKeeMsXMiu6T+N6M/sH6uenZjiMZORzP6VP9OFJ6b0bX/YqnevH3Ovy36sPnGEbxPP7EQfbu2td1KMDoe76s9KBYO169SJoHDx5k27ZtXYcBwJYtWwB6Fc/Lzz2R33zH57oOhf/7xksBehELGM9C+hRPn2KBUTz3fPuZXn3PoR+/O4djWVIDTpoOBJIkaUy9qDQlScuEh5xIkrQ8WGlKklpUUP0YLHc8TJqSpHY5EEiSpMlnpSlJao8DgSRJWh6sNCVJ7XKfpiRJk89KU5LUrgFXmiZNSVKLhn1qMLtnJUkak5WmJKk9BcwNd0YgK01JksZkpSlJateA92maNCVJ7Rpw0rR7VpKkMVlpSpJaVM49K0nScmClKUlqT0F5EmpJksZk96wkSZPPSlOS1C4POZEkafJZaUqS2lPl3LOSJC0HVpqSpHYNeJ+mSVOS1Kqye1aSpMlnpSlJalENunvWSlOSpDFZaUqS2lMMeho9k6YkqV0DnrDd7llJksZkpSlJak0BNeDuWStNSZLGZKUpSWpPlfs0jyTJ5iT3JNmV5Oqleh1J0rDUXC365ViSvDzJHfMuP07ywSTrk9yS5N7met1CsS9J0kwyDfxfwNuA84BfT3LeUryWJEnHUlX3VNUFVXUB8MvA08CfA1cD26tqI7C9uX9MS1VpXgjsqqr7qupZ4JPA5Uv0WpKkIam5xb+M7xLgO1X1XUZ56fpm+fXAOxd6cmoJpjNK8g+BzVX1j5v77wF+paref6T1N2zYUJs3b170OI7HzMwMAHv37u04kpGZmRlOPWWKmRc92nUo7H1k1HPRh1jAeBbSp3j6FAuM4nn8x3O9+p5DP353ZmZmuO66626rqk1Lsf1Tsr5+JZcs+nY/V58aK+YkfwR8rar+zySPVdVp8x57tKqO2UW7VAOBcoRlP5Wdk7wPeF9z98C2bdvuXKJY+uB04IddB7HEJr2Ntm/YbN/z8/OLuK2f8gSPfvZz9anTl2DTq5PsmHd/a1Vtnb9CkhOAdwDXHO+LLFXS3A2cM+/+2cBD81doGrMVIMmOpfqvpg8mvX0w+W20fcNm+/qjqrrsVnwboyrz4eb+w0k2VNWeJBuAfQttYKn2af5vYGOSc5vMfgVw4xK9liRJ4/h14BPz7t8IXNncvhL49EIbWJKkWVWHgPcDnwXuBm6oqp1L8VqSJC0kyRrgLcCfzVt8HfCWJPc2j1230HaWbHKDqvoL4C/GXH3rwqsM2qS3Dya/jbZv2GzfMldVTwMves6yRxiNph3bkoyelSRpEjn3rCRJY+o8aU7CdHtJ/ijJviR3zlt21OmZklzTtPeeJJd1E/X4kpyT5C+T3J1kZ5IPNMsnoo1JVie5NcnXm/b9u2b5RLTvsCTTSW5P8pnm/sS0L8kDSb7ZTJG2o1k2Se07Lcmnknyr+R6+bpLaNyhV1dkFmAa+A7wUOAH4OnBelzEdZzsuBl4D3Dlv2e8BVze3rwb+Q3P7vKadq4Bzm/ZPd92GBdq3AXhNc/tk4NtNOyaijYyOK17b3F4JfBV47aS0b147/znw34DPTOBn9AHg9Ocsm6T2XQ/84+b2CcBpk9S+IV26rjQnYrq9qvoi8KPnLD7a9EyXA5+sqgNVdT+wi9H70FtVtaeqvtbcfoLRiOizmJA21siTzd2VzaWYkPYBJDkb+PvAH85bPDHtO4qJaF+SUxj9Y/5xgKp6tqoeY0LaNzRdJ82zgO/Nu7+7WTYJzqyqPTBKOsAZzfJBtznJS4BXM6rGJqaNTdflHYwObr6lqiaqfcB/Bv4FMH+SzklqXwE3J7mtmW0MJqd9LwV+APzXpnv9D5OcxOS0b1C6TpoLTrc3gQbb5iRrgT8FPlhVPz7WqkdY1us2VtVsjc6AcDZwYZJXHmP1QbUvya8B+6rqtnGfcoRlvW1f4/VV9RpGM75cleTiY6w7tPatYLT752NV9WrgKY59No6htW9Quk6aC063N2APN9My8ZzpmQbZ5iQrGSXMP6mqwwcHT1QbAZpury8Am5mc9r0eeEeSBxjtAnlzkj9mctpHVT3UXO9jdMqnC5mc9u0Gdje9HwCfYpREJ6V9g9J10pzk6faONj3TjcAVSVYlORfYCNzaQXxjSxJG+1Purqr/NO+hiWhjkp9Lclpz+0TgUuBbTEj7quqaqjq7ql7C6Dv2+ar6DSakfUlOSnLy4dvAW4E7mZD2VdVe4HtJXt4sugS4iwlp3+B0PRIJeDuj0ZjfAf511/EcZxs+AewBDjL6L++9jGae2A7c21yvn7f+v27aew/wtq7jH6N9b2DUvfMN4I7m8vZJaSPwS8DtTfvuBP5Ns3wi2vectr6Rn4yenYj2Mdrn9/XmsvPw78iktK+J9wJgR/MZ/Z/Auklq35AuzggkSdKYuu6elSRpMEyakiSNyaQpSdKYTJqSJI3JpClJ0phMmpIkjcmkKUnSmEyakiSN6f8HqiIifuNO1XAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 576x576 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"NORMAL TERMINATION OF SIMULATION\n"
]
}
],
"outputs": [],
"source": [
"hdmon = StructuredHeadMonitor(layer=0, vmin=70, vmax=95)\n",
"dll = \"libmf6\"\n",
Expand Down
Loading

0 comments on commit de0aff9

Please sign in to comment.