-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
dddadc4
commit 85d0051
Showing
1 changed file
with
205 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"name": "PreprocessingFinal.ipynb", | ||
"provenance": [], | ||
"authorship_tag": "ABX9TyMgZo25t5kp1nELT9FOxLtd", | ||
"include_colab_link": true | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "view-in-github", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"<a href=\"https://colab.research.google.com/github/mjag7682/CS9-1-NLP-for-Twitter-Data-for-predicting-stocks/blob/master/PreprocessingFinal.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "_gXtdFlzndWh" | ||
}, | ||
"source": [ | ||
"!pip install contractions\n", | ||
"!pip install emoji\n", | ||
"import pandas as pd\n", | ||
"import re\n", | ||
"import emoji\n", | ||
"import nltk\n", | ||
"import contractions\n", | ||
"import torch\n", | ||
"\n", | ||
"nltk.download('punkt')\n", | ||
"nltk.download('stopwords')\n", | ||
"# from nltk.tokenize import word_tokenize\n", | ||
"from nltk.tokenize import TweetTokenizer \n", | ||
"from nltk.corpus import stopwords as sw\n", | ||
"from nltk.tokenize import word_tokenize \n", | ||
"from nltk.tokenize.treebank import TreebankWordDetokenizer\n", | ||
"import requests \n", | ||
"from pprint import pprint\n", | ||
"import numpy as np\n", | ||
"from nltk.stem import PorterStemmer\n", | ||
"\n", | ||
"import tensorflow as tf\n", | ||
"import tensorflow_hub as hub\n", | ||
"from datetime import datetime\n", | ||
"from tensorflow import keras\n", | ||
"# import bert\n", | ||
"# from bert import run_classifier\n", | ||
"# from bert import optimization\n", | ||
"# from bert import tokenization\n", | ||
"import os\n", | ||
"import pprint\n", | ||
"import json\n", | ||
"import random\n", | ||
"import string\n", | ||
"import sys" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "z70r1eYrnoB_" | ||
}, | ||
"source": [ | ||
"combine_ds['message'] = combine_ds['message'].str.lower()\n", | ||
"message = combine_ds['message'].tolist()\n", | ||
"\n", | ||
"print(message[:10])\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "C65MA9lJnwEv" | ||
}, | ||
"source": [ | ||
"def remove_stopwords(msg):\n", | ||
" filtered_sentence = [w for w in tokens if not w in stop_words]\n", | ||
" return filtered_sentence\n", | ||
"\n", | ||
"def remove_punctuation_re(x):\n", | ||
" x = ' '.join(re.sub(\"https?://\\S+\",\"\",x).split()) #Removing URLs\n", | ||
"\n", | ||
" x = ' '.join(re.sub(\"^@\\S+|\\s@\\S+\",\"\",x).split()) #Removing Mentions\n", | ||
"\n", | ||
" # x = ' '.join(re.sub(r'[^$\\w\\s]',\" \",x).split())\n", | ||
" x = ' '.join(re.sub(r'[^\\w\\s]',\" \",x).split()) #Removes Hashtags\n", | ||
"\n", | ||
" x = ' '.join(re.sub(r'_',\" \",x).split()) #Removing _ from emojis text\n", | ||
"\n", | ||
" return x" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "4LRFAxgcn_fi" | ||
}, | ||
"source": [ | ||
"message_er = []\n", | ||
"ps = PorterStemmer()\n", | ||
"stop_words = sw.words(\"english\")\n", | ||
"tweet_tokenizer = TweetTokenizer()\n", | ||
"detokenizer = TreebankWordDetokenizer()\n", | ||
"message_p = []\n", | ||
"for msg in message:\n", | ||
" \n", | ||
" # remove emojis\n", | ||
" msg = emoji.demojize(msg)\n", | ||
" \n", | ||
" #tokenize\n", | ||
" tokens = tweet_tokenizer.tokenize(msg)\n", | ||
"\n", | ||
" # remove stopwords\n", | ||
" msg = remove_stopwords(msg)\n", | ||
" if 'rt' in msg:\n", | ||
" # remove retweets\n", | ||
" message_p.append('-1')\n", | ||
" else: \n", | ||
" # detokenize\n", | ||
" msg = detokenizer.detokenize(msg)\n", | ||
" \n", | ||
" # fix contractions\n", | ||
" msg = contractions.fix(msg)\n", | ||
"\n", | ||
" # remove punctuations\n", | ||
" msg = remove_punctuation_re(msg) \n", | ||
" message_p.append(msg)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "pXWjHAcQoIEh" | ||
}, | ||
"source": [ | ||
"#Removing repeating words like hurrrryyyyyy-- worrks on tokenized list\n", | ||
"\n", | ||
"strOfMsg = \" \".join(itertools.chain.from_iterable(message_tok))\n", | ||
"message_rpt = re.compile(r\"(.)\\1{2,}\", re.IGNORECASE)\n", | ||
"\n", | ||
"def rpt_replace(match):\n", | ||
" return match.group(1)+match.group(1)\n", | ||
"\n", | ||
"# t = 'amzn dip buyer fulll attack boooyaaaaaaaaaaaaaaaah'\n", | ||
"re_t = ''\n", | ||
"message_nrp = []\n", | ||
"\n", | ||
"def processRepeatings(data):\n", | ||
" re_t= re.sub(message_rpt, rpt_replace, data )\n", | ||
" return message_nrp.append(re_t)\n", | ||
"\n", | ||
"processRepeatings(strOfMsg)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "pwVS7SDnoaIt" | ||
}, | ||
"source": [ | ||
"#For Hashtags elongated words using Word segmenter\n", | ||
"!pip install ekphrasis\n", | ||
"from ekphrasis.classes.segmenter import Segmenter\n", | ||
"\n", | ||
"# segmenter using the word statistics from english Wikipedia\n", | ||
"# seg_eng = Segmenter(corpus=\"english\") \n", | ||
"message_seg = []\n", | ||
"\n", | ||
"# segmenter using the word statistics from Twitter\n", | ||
"seg_tw = Segmenter(corpus=\"twitter\")\n", | ||
"\n", | ||
"# words = [\"exponentialbackoff\", \"gamedev\", \"retrogaming\", \"thewatercooler\", \"panpsychism\"]\n", | ||
"for w in message_sw:\n", | ||
" # print(w)\n", | ||
" message_seg.append(seg_tw.segment(w))\n", | ||
" # print(\"(tw):\", seg_tw.segment(w))\n", | ||
" # print()" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
} | ||
] | ||
} |