Repository for the Paper ``Making deep neural networks right for the right scientific reasons by interacting with their explanations'' by Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger, Franziska Herbert, Xiaoting Shao, Hans-Georg Luigs, Anne-Katrin Mahlein & Kristian Kersting.
In the process of paper review we have generated a Code Ocean capsule found under: TODO.
TODO License
Please get in touch with the corresponding authors.
Default Training:
python3 Plant_Phenotyping/main_hs.py
--data_path <path/to/data>
--save_path=<path>
--gpus=0,1,2,3 -b 10 --lr 0.0001 -j 5 --mask 0 --cv_splits 5 --cv_current_split 0
--epochs=300
Revising:
python3 Plant_Phenotyping/main_hs.py
--data_path <path/to/data>
--save_path=<path>
--gpus=0,1,2,3 -b 10 --lr 0.0001 -j 5 --mask 2 --l2_grad=20 --cv_splits 5 --cv_current_split 0
--epochs=300 --weighted-rrr
Evaluating:
python3 Plant_Phenotyping/main_hs.py
--data_path <path/to/data>
--save_path=<path/tmp>
--resume=<path/model.pth.tar>
--gpus=0
--evaluate -b 4 -j 5 --mask=0 --cv_splits=5 --cv_current_split=0
Creating Explanations:
python3 Plant_Phenotyping/main_hs.py
--data_path <path/to/data>
--save_path=<path/tmp>
--resume=<path/model.pth.tar>
--gpus=0
--gradcam -b 1 --mask=0 --cv_splits=5 --cv_current_split=0
- Add example RRR on DecoyMNIST