-
Notifications
You must be signed in to change notification settings - Fork 120
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
12 changed files
with
216 additions
and
31 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -16,5 +16,5 @@ wheels/ | |
htmlcov | ||
*tmp/ | ||
*tmp-ck-*/ | ||
cache/ | ||
local/cache/ | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
167 changes: 167 additions & 0 deletions
167
cm-mlops/script/get-preprocessed-dataset-generic/src/preprocess_object_detection_dataset.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
#!/usr/bin/env python3 | ||
|
||
import os | ||
import json | ||
import numpy as np | ||
from PIL import Image | ||
import torch | ||
import torchvision | ||
|
||
SUPPORTED_EXTENSIONS = ['jpeg', 'jpg', 'gif', 'png'] | ||
|
||
def load_image(image_path, target_size, data_type='uint8', convert_to_bgr=False, | ||
normalize_data=False, normalize_lower=-1, normalize_upper=1, | ||
subtract_mean=False, given_channel_means='', given_channel_stds='', | ||
quantize=0, quant_scale=1, quant_offset=0, convert_to_unsigned=0): | ||
if not convert_to_bgr: | ||
image = Image.open(image_path).convert('RGB') | ||
else: | ||
image = Image.open(image_path).convert('BGR') | ||
|
||
tensor_image = torchvision.transforms.functional.to_tensor(image) | ||
mean = torch.as_tensor(given_channel_means) | ||
std = torch.as_tensor(given_channel_stds) | ||
normalized_image = (tensor_image - mean[:, None, None]) / std[:, None, None] | ||
|
||
resized_image = torch.nn.functional.interpolate(normalized_image[None], | ||
size=(target_size, target_size), | ||
mode='bilinear')[0].numpy() | ||
|
||
if quantize == 1: | ||
resized_image = quantize_to_uint8(resized_image, quant_scale, quant_offset) | ||
|
||
original_height, original_width, _ = resized_image.shape | ||
batch_shape = (1, target_size, target_size, 3) | ||
batch_data = resized_image.reshape(batch_shape) | ||
|
||
return batch_data, original_width, original_height | ||
|
||
def quantize_to_uint8(image, scale, offset): | ||
quantized_image = (image.astype(np.float64) / scale + offset).astype(np.float64) | ||
output = np.round_(quantized_image) | ||
output = np.clip(output, 0, 255) | ||
return output.astype(np.uint8) | ||
|
||
def preprocess_files(selected_filenames, source_dir, destination_dir, square_side, | ||
data_type, convert_to_bgr, normalize_data, normalize_lower, | ||
normalize_upper, subtract_mean, given_channel_means, | ||
given_channel_stds, quantize, quant_scale, quant_offset, | ||
convert_to_unsigned, new_file_extension): | ||
output_signatures = [] | ||
|
||
for current_idx, input_filename in enumerate(selected_filenames): | ||
full_input_path = os.path.join(source_dir, input_filename) | ||
image_data, original_width, original_height = load_image( | ||
image_path=full_input_path, | ||
target_size=square_side, | ||
data_type=data_type, | ||
convert_to_bgr=convert_to_bgr, | ||
normalize_data=normalize_data, | ||
normalize_lower=normalize_lower, | ||
normalize_upper=normalize_upper, | ||
subtract_mean=subtract_mean, | ||
given_channel_means=given_channel_means, | ||
given_channel_stds=given_channel_stds, | ||
quantize=quantize, | ||
quant_scale=quant_scale, | ||
quant_offset=quant_offset, | ||
convert_to_unsigned=convert_to_unsigned | ||
) | ||
|
||
output_filename = f"{input_filename.rsplit('.', 1)[0]}.{new_file_extension}" if new_file_extension else input_filename | ||
full_output_path = os.path.join(destination_dir, output_filename) | ||
image_data.tofile(full_output_path) | ||
|
||
print(f"[{current_idx+1}]: Stored {full_output_path}") | ||
output_signatures.append(f'{output_filename};{original_width};{original_height}') | ||
|
||
return output_signatures | ||
|
||
def preprocess(): | ||
source_directory = os.environ['CM_DATASET_PATH'] | ||
destination_directory = os.environ['CM_DATASET_PREPROCESSED_PATH'] | ||
|
||
intermediate_data_type = os.environ.get('CM_DATASET_INTERMEDIATE_DATA_TYPE', np.float32) | ||
square_side = int(os.environ['CM_DATASET_INPUT_SQUARE_SIDE']) | ||
crop_percentage = float(os.environ['CM_DATASET_CROP_FACTOR']) | ||
inter_size = int(os.getenv('CM_DATASET_INTERMEDIATE_SIZE', 0)) | ||
convert_to_bgr = int(os.getenv('CM_DATASET_CONVERT_TO_BGR', 0)) | ||
offset = int(os.getenv('CM_DATASET_SUBSET_OFFSET', 0)) | ||
volume = int(os.environ['CM_DATASET_SIZE']) | ||
fof_name = os.getenv('CM_DATASET_SUBSET_FOF', 'files.txt') | ||
data_type = os.getenv('CM_DATASET_DATA_TYPE_INPUT', 'float32') | ||
input_data_type = os.getenv('CM_DATASET_DATA_TYPE_INPUT', 'float32') | ||
data_layout = os.getenv('CM_DATASET_DATA_LAYOUT', '').lower() | ||
new_file_extension = os.getenv('CM_DATASET_PREPROCESSED_EXTENSION', '') | ||
normalize_data = int(os.getenv('CM_DATASET_NORMALIZE_DATA', '0')) | ||
subtract_mean = int(os.getenv('CM_DATASET_SUBTRACT_MEANS', '0')) | ||
given_channel_means = os.getenv('CM_DATASET_GIVEN_CHANNEL_MEANS', '') | ||
given_channel_stds = os.getenv('CM_DATASET_GIVEN_CHANNEL_STDS', '') | ||
quant_scale = float(os.environ['CM_DATASET_QUANT_SCALE']) | ||
quant_offset = float(os.environ['CM_DATASET_QUANT_OFFSET']) | ||
quantize = int(os.environ['CM_DATASET_QUANTIZE']) # 1 for quantize to int8 | ||
convert_to_unsigned = int(os.environ['CM_DATASET_CONVERT_TO_UNSIGNED']) # 1 for int8 to uint8 | ||
|
||
images_list = os.getenv('CM_DATASET_IMAGES_LIST') | ||
interpolation_method = os.getenv('CM_DATASET_INTERPOLATION_METHOD', '') | ||
|
||
annotations_filepath = os.environ['CM_DATASET_ANNOTATIONS_FILE_PATH'] | ||
is_calibration = os.environ['CM_DATASET_TYPE'] == "calibration" | ||
image_file = os.getenv('CM_IMAGE_FILE', '') | ||
|
||
normalize_lower = float(os.getenv('CM_DATASET_NORMALIZE_LOWER', -1.0)) | ||
normalize_upper = float(os.getenv('CM_DATASET_NORMALIZE_UPPER', 1.0)) | ||
|
||
if given_channel_means: | ||
given_channel_means = np.fromstring(given_channel_means, dtype=np.float32, sep=' ').astype(intermediate_data_type) | ||
if convert_to_bgr: | ||
given_channel_means = given_channel_means[::-1] | ||
|
||
given_channel_stds = os.getenv('CM_DATASET_GIVEN_CHANNEL_STDS', '') | ||
if given_channel_stds: | ||
given_channel_stds = np.fromstring(given_channel_stds, dtype=np.float32, sep=' ').astype(intermediate_data_type) | ||
if convert_to_bgr: | ||
given_channel_stds = given_channel_stds[::-1] | ||
|
||
print(f"From: {source_directory}, To: {destination_directory}, Size: {square_side}, Crop: {crop_percentage}, InterSize: {inter_size}, 2BGR: {convert_to_bgr}, " + | ||
f"OFF: {offset}, VOL: '{volume}', FOF: {fof_name}, DTYPE: {data_type}, DLAYOUT: {data_layout}, EXT: {new_file_extension}, " + | ||
f"NORM: {normalize_data}, SMEAN: {subtract_mean}, GCM: {given_channel_means}, GSTD: {given_channel_stds}, QUANTIZE: {quantize}, QUANT_SCALE: {quant_scale}, " + | ||
f"QUANT_OFFSET: {quant_offset}, CONV_UNSIGNED: {convert_to_unsigned}, INTER: {interpolation_method}") | ||
|
||
|
||
if image_file: | ||
source_directory = os.path.dirname(image_file) | ||
selected_filenames = [os.path.basename(image_file)] | ||
else: | ||
if annotations_filepath and not is_calibration: | ||
with open(annotations_filepath, "r") as annotations_fh: | ||
annotations_struct = json.load(annotations_fh) | ||
ordered_filenames = [image_entry['file_name'] for image_entry in annotations_struct['images']] | ||
elif os.path.isdir(source_directory): | ||
ordered_filenames = [filename for filename in sorted(os.listdir(source_directory)) if any(filename.lower().endswith(extension) for extension in SUPPORTED_EXTENSIONS)] | ||
else: | ||
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), source_directory) | ||
|
||
total_volume = len(ordered_filenames) | ||
|
||
if offset < 0: | ||
offset += total_volume | ||
|
||
if not volume: | ||
volume = total_volume - offset | ||
|
||
selected_filenames = ordered_filenames[offset:offset + volume] | ||
|
||
output_signatures = preprocess_files(selected_filenames, source_directory, destination_directory, square_side, data_type, | ||
convert_to_bgr, normalize_data, normalize_lower, normalize_upper, | ||
subtract_mean, given_channel_means, given_channel_stds, quantize, | ||
quant_scale, quant_offset, convert_to_unsigned, new_file_extension) | ||
|
||
fof_full_path = os.path.join(destination_directory, fof_name) | ||
with open(fof_full_path, 'w') as fof_file: | ||
for filename in output_signatures: | ||
fof_file.write(f'{filename}\n') | ||
|
||
if __name__ == "__main__": | ||
preprocess() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters