Skip to content

Commit

Permalink
Merge pull request #53 from SeeleVolle/mlperf-inference-results-scc24
Browse files Browse the repository at this point in the history
Mlperf inference results scc24 for scc104 with cpu and gpu
  • Loading branch information
arjunsuresh authored Oct 21, 2024
2 parents c77698c + 3d060cf commit 9b87073
Show file tree
Hide file tree
Showing 40 changed files with 1,871 additions and 0 deletions.
1 change: 1 addition & 0 deletions open/scc104-ZJUSCT/code/bert-99/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
TBD
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
| Model | Scenario | Accuracy | Throughput | Latency (in ms) |
|---------|------------|------------|--------------|-------------------|
| bert-99 | offline | 90.8749 | 2.356 | - |
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops).

*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.*

## Host platform

* OS version: Linux-6.1.110-1.el9.elrepo.x86_64-x86_64-with-glibc2.34
* CPU version: x86_64
* Python version: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0]
* MLCommons CM version: 3.2.4

## CM Run Command

See [CM installation guide](https://docs.mlcommons.org/inference/install/).

```bash
pip install -U cmind

cm rm cache -f

cm pull repo mlcommons@cm4mlops --checkout=5aeaffdca72142871dcde95ebf8a37e65fe3e06e

cm run script \
--tags=run-mlperf,inference,_r4.1-dev \
--model=bert-99 \
--implementation=reference \
--framework=pytorch \
--category=edge \
--scenario=Offline \
--execution_mode=valid \
--device=cpu
```
*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts),
you should simply reload mlcommons@cm4mlops without checkout and clean CM cache as follows:*

```bash
cm rm repo mlcommons@cm4mlops
cm pull repo mlcommons@cm4mlops
cm rm cache -f

```

## Results

Platform: scc104_cpu1.novalocal-reference-cpu-pytorch_v2.5.0-default_config

Model Precision: fp32

### Accuracy Results
`F1`: `90.87487`, Required accuracy for closed division `>= 89.96526`

### Performance Results
`Samples per second`: `2.35587`
Loading

0 comments on commit 9b87073

Please sign in to comment.