Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

compatibility: mlr3 0.21.0 #159

Merged
merged 4 commits into from
Sep 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,8 @@ Suggests:
rpart,
stringi,
testthat (>= 3.0.0)
Remotes: mlr-org/bbotk
Remotes:
mlr-org/mlr3
ByteCompile: no
Encoding: UTF-8
Config/testthat/edition: 3
Expand Down
6 changes: 2 additions & 4 deletions R/mbo_defaults.R
Original file line number Diff line number Diff line change
Expand Up @@ -161,14 +161,13 @@ default_surrogate = function(instance, learner = NULL, n_learner = NULL) {
default_rf(noisy)
}
# stability: evaluate and add a fallback
learner$encapsulate[c("train", "predict")] = "evaluate"
require_namespaces("ranger")
fallback = mlr3learners::LearnerRegrRanger$new()
fallback$param_set$values = insert_named(
fallback$param_set$values,
list(num.trees = 10L, keep.inbag = TRUE, se.method = "jack")
)
learner$fallback = fallback
learner$encapsulate("evaluate", fallback)

if (has_deps) {
require_namespaces("mlr3pipelines")
Expand All @@ -184,8 +183,7 @@ default_surrogate = function(instance, learner = NULL, n_learner = NULL) {
learner
)
)
learner$encapsulate[c("train", "predict")] = "evaluate"
learner$fallback = LearnerRegrFeatureless$new()
learner$encapsulate("evaluate", lrn("regr.featureless"))
}
}

Expand Down
10 changes: 5 additions & 5 deletions tests/testthat/helper.R
Original file line number Diff line number Diff line change
Expand Up @@ -101,13 +101,13 @@ MAKE_DESIGN = function(instance, n = 4L) {

if (requireNamespace("mlr3learners") && requireNamespace("DiceKriging") && requireNamespace("rgenoud")) {
library(mlr3learners)
REGR_KM_NOISY = lrn("regr.km", covtype = "matern3_2", optim.method = "gen", control = list(trace = FALSE, max.generations = 2), nugget.estim = TRUE, jitter = 1e-12)
REGR_KM_NOISY$encapsulate = c(train = "callr", predict = "callr")
REGR_KM_DETERM = lrn("regr.km", covtype = "matern3_2", optim.method = "gen", control = list(trace = FALSE, max.generations = 2), nugget.stability = 10^-8)
REGR_KM_DETERM$encapsulate = c(train = "callr", predict = "callr")
REGR_KM_NOISY = lrn("regr.km", covtype = "matern3_2", optim.method = "gen", control = list(trace = FALSE), nugget.estim = TRUE, jitter = 1e-12)
REGR_KM_NOISY$encapsulate("callr", lrn("regr.featureless"))
REGR_KM_DETERM = lrn("regr.km", covtype = "matern3_2", optim.method = "gen", control = list(trace = FALSE), nugget.stability = 10^-8)
REGR_KM_DETERM$encapsulate("callr", lrn("regr.featureless"))
}
REGR_FEATURELESS = lrn("regr.featureless")
REGR_FEATURELESS$encapsulate = c(train = "callr", predict = "callr")
REGR_FEATURELESS$encapsulate("callr", lrn("regr.featureless"))

OptimizerError = R6Class("OptimizerError",
inherit = OptimizerBatch,
Expand Down
2 changes: 1 addition & 1 deletion tests/testthat/test_bayesopt_ego.R
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ test_that("stable bayesopt_ego", {
expect_true(nrow(instance$archive$data) == 5L)
expect_number(acq_function$surrogate$assert_insample_perf, upper = 1)
lines = readLines(f)
# expect_true(sum(grepl("Optimizer Error", unlist(map(strsplit(lines, "\\[bbotk\\] "), 2L)))) == 1L)
expect_true(sum(grepl("Optimizer Error", unlist(map(strsplit(lines, "\\[bbotk\\] "), 2L)))) == 1L)
expect_true(sum(grepl("Proposing a randomly sampled point", unlist(map(strsplit(lines, "\\[bbotk\\] "), 2L)))) == 2L)

# Surrogate using LearnerRegrError as Learner that will fail during train
Expand Down
35 changes: 11 additions & 24 deletions tests/testthat/test_mbo_defaults.R
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ test_that("default_surrogate", {
expect_r6(surrogate$learner, "LearnerRegrKM")
expect_equal_sorted(surrogate$learner$param_set$values,
list(covtype = "matern5_2", optim.method = "gen", control = list(trace = FALSE), nugget.stability = 1e-08))
expect_equal(surrogate$learner$encapsulate, c(train = "evaluate", predict = "evaluate"))
expect_equal(surrogate$learner$encapsulation, c(train = "evaluate", predict = "evaluate"))
expect_r6(surrogate$learner$fallback, "LearnerRegrRanger")

# singlecrit all numeric, noisy
Expand All @@ -32,7 +32,7 @@ test_that("default_surrogate", {
expect_r6(surrogate$learner, "LearnerRegrKM")
expect_equal_sorted(surrogate$learner$param_set$values,
list(covtype = "matern5_2", optim.method = "gen", control = list(trace = FALSE), nugget.estim = TRUE, jitter = 1e-12))
expect_equal(surrogate$learner$encapsulate, c(train = "evaluate", predict = "evaluate"))
expect_equal(surrogate$learner$encapsulation, c(train = "evaluate", predict = "evaluate"))
expect_r6(surrogate$learner$fallback, "LearnerRegrRanger")

# twocrit all numeric, deterministic
Expand All @@ -41,10 +41,10 @@ test_that("default_surrogate", {
expect_list(surrogate$learner, types = "LearnerRegrKM")
expect_equal_sorted(surrogate$learner[[1L]]$param_set$values,
list(covtype = "matern5_2", optim.method = "gen", control = list(trace = FALSE), nugget.stability = 1e-08))
expect_equal(surrogate$learner[[1L]]$encapsulate, c(train = "evaluate", predict = "evaluate"))
expect_equal(surrogate$learner[[1L]]$encapsulation, c(train = "evaluate", predict = "evaluate"))
expect_r6(surrogate$learner[[1L]]$fallback, "LearnerRegrRanger")
expect_equal(surrogate$learner[[1L]]$param_set$values, surrogate$learner[[2L]]$param_set$values)
expect_equal(surrogate$learner[[1L]]$encapsulate, surrogate$learner[[2L]]$encapsulate)
expect_equal(surrogate$learner[[1L]]$encapsulation, surrogate$learner[[2L]]$encapsulation)
expect_equal(surrogate$learner[[1L]]$fallback, surrogate$learner[[2L]]$fallback)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

uncommented these tests again, should be working


# twocrit all numeric, noisy
Expand All @@ -53,10 +53,10 @@ test_that("default_surrogate", {
expect_list(surrogate$learner, types = "LearnerRegrKM")
expect_equal_sorted(surrogate$learner[[1L]]$param_set$values,
list(covtype = "matern5_2", optim.method = "gen", control = list(trace = FALSE), nugget.estim = TRUE, jitter = 1e-12))
expect_equal(surrogate$learner[[1L]]$encapsulate, c(train = "evaluate", predict = "evaluate"))
expect_equal(surrogate$learner[[1L]]$encapsulation, c(train = "evaluate", predict = "evaluate"))
expect_r6(surrogate$learner[[1L]]$fallback, "LearnerRegrRanger")
expect_equal(surrogate$learner[[1L]]$param_set$values, surrogate$learner[[2L]]$param_set$values)
expect_equal(surrogate$learner[[1L]]$encapsulate, surrogate$learner[[2L]]$encapsulate)
expect_equal(surrogate$learner[[1L]]$encapsulation, surrogate$learner[[2L]]$encapsulation)
expect_equal(surrogate$learner[[1L]]$fallback, surrogate$learner[[2L]]$fallback)

# singlecrit mixed input
Expand All @@ -65,7 +65,7 @@ test_that("default_surrogate", {
expect_r6(surrogate$learner, "LearnerRegrRanger")
expect_equal_sorted(surrogate$learner$param_set$values,
list(num.threads = 1L, num.trees = 100L, keep.inbag = TRUE, se.method = "jack"))
expect_equal(surrogate$learner$encapsulate, c(train = "evaluate", predict = "evaluate"))
expect_equal(surrogate$learner$encapsulation, c(train = "evaluate", predict = "evaluate"))
expect_r6(surrogate$learner$fallback, "LearnerRegrRanger")

# twocrit mixed input
Expand All @@ -74,10 +74,10 @@ test_that("default_surrogate", {
expect_list(surrogate$learner, types = "LearnerRegrRanger")
expect_equal_sorted(surrogate$learner[[1L]]$param_set$values,
list(num.threads = 1L, num.trees = 100L, keep.inbag = TRUE, se.method = "jack"))
expect_equal(surrogate$learner[[1L]]$encapsulate, c(train = "evaluate", predict = "evaluate"))
expect_equal(surrogate$learner[[1L]]$encapsulation, c(train = "evaluate", predict = "evaluate"))
expect_r6(surrogate$learner[[1L]]$fallback, "LearnerRegrRanger")
expect_equal(surrogate$learner[[1L]]$param_set$values, surrogate$learner[[2L]]$param_set$values)
expect_equal(surrogate$learner[[1L]]$encapsulate, surrogate$learner[[2L]]$encapsulate)
expect_equal(surrogate$learner[[1L]]$encapsulation, surrogate$learner[[2L]]$encapsulation)
expect_equal(surrogate$learner[[1L]]$fallback, surrogate$learner[[2L]]$fallback)

# singlecrit mixed input deps
Expand Down Expand Up @@ -152,12 +152,11 @@ test_that("stability and defaults", {
# this should trigger a mbo_error
instance = MAKE_INST_1D(terminator = trm("evals", n_evals = 5L))
learner = LearnerRegrError$new()
learner$encapsulate[c("train", "predict")] = "evaluate"
learner$fallback = lrn("regr.ranger", num.trees = 10L, keep.inbag = TRUE, se.method = "jack")
learner$encapsulate("evaluate", lrn("regr.ranger", num.trees = 10L, keep.inbag = TRUE, se.method = "jack"))
surrogate = default_surrogate(instance, learner = learner, n_learner = 1L)
expect_r6(surrogate, "SurrogateLearner")
expect_r6(surrogate$learner, "LearnerRegrError")
expect_equal(surrogate$learner$encapsulate, c(train = "evaluate", predict = "evaluate"))
expect_equal(surrogate$learner$encapsulation, c(train = "evaluate", predict = "evaluate"))
expect_r6(surrogate$learner$fallback, "LearnerRegrRanger")
acq_function = default_acqfunction(instance)
expect_r6(acq_function, "AcqFunctionEI")
Expand All @@ -172,17 +171,5 @@ test_that("stability and defaults", {
lines = readLines(f)
# Nothing should happen here due to the fallback learner
expect_true(sum(grepl("Surrogate Train Error", unlist(map(strsplit(lines, "\\[bbotk\\] "), 2L)))) == 0L)

acq_function$surrogate$learner$reset()
acq_function$surrogate$learner$fallback = NULL
instance$archive$clear()
bayesopt_ego(instance, surrogate = surrogate, acq_function = acq_function, acq_optimizer = acq_optimizer)
expect_true(nrow(instance$archive$data) == 5L)
lines = readLines(f)
# Training fails but this error is not logged due to the "evaluate" encapsulate
expect_equal(acq_function$surrogate$learner$errors, "Surrogate Train Error.")
expect_true(sum(grepl("Surrogate Train Error", unlist(map(strsplit(lines, "\\[bbotk\\] "), 2L)))) == 0L)
expect_true(sum(grepl("Cannot predict", unlist(map(strsplit(lines, "\\[bbotk\\] "), 2L)))) == 1L)
expect_true(sum(grepl("Proposing a randomly sampled point", unlist(map(strsplit(lines, "\\[bbotk\\] "), 2L)))) == 1L)
})

Loading