Skip to content

modelscope/normal-depth-diffusion

Repository files navigation



Normal-Depth Diffusion Model

Normal-Depth Diffusion Model: A Generalizable Normal-Depth Diffusion Model.

如果您熟悉中文,可以阅读中文版本的README

Text-to-ND

teaser-nd

Text-to-ND-MV

image

  • Inference code.
  • Training code.
  • Pretrained model: ND, ND-MV, Albedo-MV.
  • Pretrained model: ND-MV-VAE.
  • Rendered Multi-View Image of Objaverse-dataset.

News

  • 2023-12-25: We release the training dataset mvs_objaverse through Alibaba OSS Service. We also provide a convenient multi-threads script for fast downloading.
  • 2023-12-11: Inference codes and pretrained models are released. We are working to improve ND-Diffusion Model, stay tuned!.

3D Generation

  • This repository only includes the diffusion model and 2D image generation code of RichDreamer paper.
  • For 3D Generation, please check RichDreamer.

Preparation for inference

  1. Install requirements using following scripts.
conda create -n nd
conda activate nd 
pip install -r requirements.txt
pip install git+https://github.com/openai/CLIP.git
pip install git+https://github.com/CompVis/taming-transformers.git
pip install webdataset
pip install img2dataset

we also provide a dockerfile to build docker image.

sudo docker build -t mv3dengine_22.04:cu118 -f docker/Dockerfile .
  1. Download pretrained weights.
  • ND: Normal-Depth Diffusion trained on Laion-2B
  • ND-MV: MultiView Normal-Depth Diffusion Model
  • Alebdo-MV: MultiView Depth-conditioned Albedo Diffusion Model

we also provide a script for download.

python tools/download_models/download_nd_models.py

Inference (Sampling)

we provide a script for sampling

sh demo_inference.sh

Or use the following detailed instructions:

Text2ND sampling

# dmp solver
python ./scripts/t2i.py --ckpt $ckpt_path --prompt $prompt --dpm_solver --n_samples 2 --save_dir $save_dir
# plms solver
python ./scripts/t2i.py --ckpt $ckpt_path --prompt $prompt --plms --n_samples 2  --save_dir $save_dir
# ddim solver
python ./scripts/t2i.py --ckpt $ckpt_path --prompt $prompt --n_samples 2  --save_dir $save_dir

Text2ND-MV sampling

# nd-mv
python ./scripts/t2i_mv.py --ckpt_path $ckpt_path --prompt $prompt  --num_frames 4  --model_name nd-mv --save_dir $save_dir

# nd-mv with VAE (coming soon)
python ./scripts/t2i_mv.py --ckpt_path $ckpt_path --prompt $prompt  --num_frames 4  --model_name nd-mv-vae --save_dir $save_dir

Text2Albedo-MV sampling

python ./scripts/td2i_mv.py --ckpt_path $ckpt_path --prompt $prompt --depth_file $ depth_file --num_frames 4  --model_name albedo-mv --save_dir $save_dir

Preparation for training

  1. Download Laion-2B-en-5-AES (Required to train ND model)

Download laion-2b dataset from parquet Then, put parquet files into ./laion2b-dataset-5-aes

cd ./tools/download_dataset
bash ./download_2b-5_aes.sh
cd -
  1. Download Monocular Prior Models' Weight (Required to train ND model)
# move the scannet.pt to normalbae Prior Model
mv scannet.pt ./libs/ControlNet-v1-1-nightly/annotator/normalbae/scannet.pt
# move the dpt_beit_large512.pt to ./libs/omnidata_torch/pretrained_models/dpt_beit_large_512.pt
mv dpt_beit_large512.pt ./libs/omnidata_torch/pretrained_models/dpt_beit_large_512.pt
  1. Download rendered Multi-View image of Objaverse-dataset (Required to train ND-MV and Albedo-MV model)
  • Download our rendered dataset using the prepared script
wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/valid_paths_v4_cap_filter_thres_28.json
# Example: python ./scripts/data/download_objaverse.py ./mvs_objaverse ./valid_paths_v4_cap_filter_thres_28.json 50
python ./scripts/data/download_objaverse.py /path/to/savedata /path/to/valid_paths_v4_cap_filter_thres_28.json nthreads(eg. 10)
# set up a link if you save data anywhere
ln -s /path/to/savedata mvs_objaverse
# caption file
wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/text_captions_cap3d.json

Training

Training Normal-Depth-VAE Model

  1. Download pretrained-VAE weights pretrained on ImageNet.
  2. Modify the config file in configs/autoencoder_normal_depth/autoencoder_normal_depth.yaml, set model.ckpt_path=/path/to/pretained-VAE weights
# training  VAE datasets
bash ./scripts/train_vae/train_nd_vae/train_rgbd_vae_webdatasets.sh \ model.params.ckpt_path=${pretained-VAE weights} \
data.params.train.params.curls='path_laion/{00000..${:5 end_id}}.tar' \
--gpus 0,1,2,3,4,5,6,7

Training Normal-Depth-Diffusion Model

After training and get Normal-Depth-VAE Model or you could download it from ND-VAE

# step 1
export SD-MODEL-PATH=/path/to/sd-1.5
bash scripts/train_normald_sd/txt_cond/web_datasets/train_normald_webdatasets.sh --gpus 0,1,2,3,4,5,6,7 \
    model.params.first_stage_ckpts=${Normal-Depth-VAE} model.params.ckpt_path=${SD-MODEL-PATH} \
    data.params.train.params.curls='path_laion/{00000..${:5 end_id}}.tar'

# step 2 modify your step_weights path in ./configs/stable-diffusion/normald/sd_1_5/txt_cond/web_datasets/laion_2b_step2.yaml
bash scripts/train_normald_sd/txt_cond/web_datasets/train_normald_webdatasets_step2.sh --gpus 0,1,2,3,4,5,6,7 \
    model.params.first_stage_ckpts=${Normal-Depth-VAE} \
    model.params.ckpt_path=${pretrained-step-weights} \
    data.params.train.params.curls='path_laion/{00000..${:5 end_id}}.tar'

Training MultiView-Normal-Depth-Diffusion Model

After training and get Normal-Depth-Diffusion Model or you could download it from ND,

We provide two versions of MultiView-Normal-Depth Diffusion Model

a. without VAE Denoise b. with VAE Denoise

In current version, we provide w/o VAE denoise

# a. Training Without VAE version
bash ./scripts/train_normald_sd/txt_cond/objaverse/objaverse_finetune_wovae_mvsd-4.sh --gpus 0,1,2,3,4,5,6,7,  \
    model.params.ckpt_path=${Normal-Depth-Diffusion}
# b. Training with VAE version
bash ./scripts/train_normald_sd/txt_cond/objaverse/objaverse_finetune_mvsd-4.sh --gpus 0,1,2,3,4,5,6,7, \
    model.params.ckpt_path=${Normal-Depth-Diffusion}

Training MultiView-Depth-Conditioned-Albedo-Diffusion Model

After training and get Normal-Depth-Diffusion Model or you could download it from ND,

bash scripts/train_abledo/objaverse/objaverse_finetune_mvsd-4.sh --gpus 0,1,2,3,4,5,6,7, model.params.ckpt_path=${Normal-Depth-Diffusion}

Acknowledgement

We have intensively borrow codes from the following repositories. Many thanks to the authors for sharing their codes.

Citation

@article{qiu2023richdreamer,
    title={RichDreamer: A Generalizable Normal-Depth Diffusion Model for Detail Richness in Text-to-3D}, 
    author={Lingteng Qiu and Guanying Chen and Xiaodong Gu and Qi zuo and Mutian Xu and Yushuang Wu and Weihao Yuan and Zilong Dong and Liefeng Bo and Xiaoguang Han},
    year={2023},
    journal = {arXiv preprint arXiv:2311.16918}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published