Skip to content

Inferencing on facenet model implemented in pytorch.

License

MIT, MIT licenses found

Licenses found

MIT
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

mohdsaqibhbi/Inference_on_facenet_pytorch

Repository files navigation

Inference_on_facenet_pytorch

This repo is about doing inferencing on pretrained model taken from facenet-pytorch. Running the pretrained model on an image return am embeddings of the person's face with size (1, 512). These embeddings can be used as per requirement.

How to run

  • Clone the repo using git clone https://github.com/mohdsaqibhbi/Inference_on_facenet_pytorch.git.
  • Go to this directory using cd Inference_on_facenet_pytorch.
  • Create virtual environment.
  • Install dependencies using pip install -r requirements.txt.
  • Create the database and then use live face detection to test it.
  • To create the database of embeddings
    • Put the images in the folder data/database/images/
    • Run the command python create_database.py -in data/database/images/ -o data/database/database.pkl
  • To update the database with new person's embeddings
    • Run the command python update_database.py -in data/database/database.pkl -i data/Chadwick_Boseman.jpg -n Chadwick_Boseman.jpg"
  • For live face detection
    • Need to create database embeddings first.
    • Run the command python live_detection.py -d data/database/database.pkl -th 1.0
  • To understand step by step, how to create database, update database, face verification, face recognition and live face detection, follow the jupyter-notebook Face_Recognition.

Command line arguments

  • create_database.py

    tag (* = required) variable options default value
    -in * in_path path of the input images REQUIRED
    -o out_path path of database to be saved "database.pkl"
  • update_database.py

    tag (* = required) variable options default value
    -in * in_path path of the input database REQUIRED
    -i * image path of input image REQUIRED
    -n name name of the person None

    Note : If name is not given, image name will be used as person's name.

  • live_detection.py

    tag (* = required) variable options default value
    -d * database path of the database REQUIRED
    -th threshold threshold to euclidean distance 1.0

About

Inferencing on facenet model implemented in pytorch.

Resources

License

MIT, MIT licenses found

Licenses found

MIT
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published