Skip to content

Commit

Permalink
Merge pull request #128 from mrc-ide/feature/rung_tuning_function
Browse files Browse the repository at this point in the history
Feature/rung tuning function
  • Loading branch information
bobverity authored Jul 18, 2024
2 parents d8764f0 + 4664f68 commit b692ad4
Show file tree
Hide file tree
Showing 5 changed files with 88 additions and 2 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ Description: drjacoby is an R package for performing Bayesian inference via
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.1
RoxygenNote: 7.3.2
LinkingTo:
Rcpp
Imports:
Expand Down
2 changes: 2 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ export(plot_scatter)
export(plot_trace)
export(run_mcmc)
export(sample_chains)
export(tune_rungs)
import(dplyr)
import(ggplot2)
importFrom(GGally,ggpairs)
Expand All @@ -25,6 +26,7 @@ importFrom(coda,geweke.diag)
importFrom(coda,mcmc)
importFrom(grDevices,grey)
importFrom(magrittr,"%>%")
importFrom(stats,approx)
importFrom(stats,cor)
importFrom(stats,pnorm)
importFrom(stats,quantile)
Expand Down
54 changes: 54 additions & 0 deletions R/main.R
Original file line number Diff line number Diff line change
Expand Up @@ -609,6 +609,58 @@ deploy_chain <- function(args) {
return(ret)
}

#------------------------------------------------
#' @title Tune mcmc rungs
#'
#' @description Takes a completed mcmc object that has been run with parallel
#' tempering, and uses the acceptance rates to recalculate the optimal number
#' and distribution of rungs.
#'
#' @param x an object of class \code{drjacoby_output}, with the MCMC completed
#' and run with parallel tempering over multiple rungs.
#' @param target_acceptance the target acceptance rate between rungs. Higher
#' values will lead to more rungs being needed.
#'
#' @importFrom stats approx
#' @export

tune_rungs <- function(x, target_acceptance = 0.23) {

# avoid "no visible binding" note
link <- value <- NULL

# check inputs
assert_class(x, "drjacoby_output")
assert_neq(length(x$diagnostics$mc_accept), 1, message = "run_mcmc() must have been run with multiple temperature rungs")
assert_single_bounded(target_acceptance)

# get acceptance rates and check all non-zero
acceptance <- x$diagnostics$mc_accept |>
group_by(link) |>
summarise(value = mean(value)) |>
pull(value)

assert_gr(acceptance, 0, message = "acceptance rates must be positive for all pairs of rungs")
n_rungs <- length(acceptance) + 1

# calculate cumulative barrier Lambda
Lambda <- sum(1 - acceptance)

# calculate new number of rungs
n_rungs_new <- ceiling(Lambda / (1 - target_acceptance)) + 1

# calculate new distribution of rungs by linear interpolation
beta_old <- x$parameters$beta_manual
y_old <- c(0, cumsum(1 - acceptance))
#plot(beta_old, y_old)
y_new <- seq(0, Lambda, l = n_rungs_new)
result <- approx(y_old, beta_old, xout = y_new)
#points(result$y, result$x, col = 2)
beta_new <- result$y

return(beta_new)
}

#------------------------------------------------
# update progress bar
# pb_list = list of progress bar objects
Expand All @@ -625,5 +677,7 @@ update_progress <- function(pb_list, name, i, max_i, close = TRUE) {
}
}

#------------------------------------------------
# Deal with user input cpp not being defined
globalVariables(c("create_xptr"))

12 changes: 11 additions & 1 deletion R_ignore/deploy.R
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,17 @@ mcmc <- run_mcmc(data = list(x = x),
loglike = r_loglike,
logprior = r_logprior,
burnin = 1e3,
samples = 1e3)
samples = 1e3,
chains = 2,
beta_manual = beta_tuned)

plot_mc_acceptance(mcmc)

beta_tuned

beta_tuned

beta_tuned <- interleave_with_halfway(beta_tuned)

plot_trace(mcmc, show = "mu", phase = "burnin")

Expand Down
20 changes: 20 additions & 0 deletions man/tune_rungs.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

0 comments on commit b692ad4

Please sign in to comment.