Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

recovery_rates variable has been renamed as (disease) progression_rates. #334

Merged
merged 2 commits into from
Sep 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 19 additions & 17 deletions R/disease_progression.R
Original file line number Diff line number Diff line change
@@ -1,34 +1,34 @@
#' @title Calculate recovery rates
#' @description Calculates recovery rates for each individual in the population
#' @title Calculate disease progression rates
#' @description Calculates disease progression rates for each individual in the population
#' for storage in competing hazards object and subsequent resolution
#'
#' @param variables the available human variables
#' @param recovery_outcome competing hazards object for recovery rates
#' @param progression_outcome competing hazards object for disease progression rates
#' @noRd
create_recovery_rates_process <- function(
create_progression_rates_process <- function(
variables,
recovery_outcome
progression_outcome
) {
function(timestep){
target <- variables$state$get_index_of("S")$not()
recovery_outcome$set_rates(
progression_outcome$set_rates(
target,
variables$recovery_rates$get_values(target))
variables$progression_rates$get_values(target))
}
}


#' @title Disease progression outcomes (recovery)
#' @title Disease progression outcomes
#' @description Following resolution of competing hazards, update state and
#' infectivity of sampled individuals
#'
#' @param timestep the current timestep
#' @param target the sampled recovering individuals
#' @param target the sampled progressing individuals
#' @param variables the available human variables
#' @param parameters model parameters
#' @param renderer competing hazards object for recovery rates
#' @param renderer competing hazards object for disease progression rates
#' @noRd
recovery_outcome_process <- function(
progression_outcome_process <- function(
timestep,
target,
variables,
Expand All @@ -48,7 +48,7 @@ recovery_outcome_process <- function(
"U",
variables$infectivity,
parameters$cu,
variables$recovery_rates,
variables$progression_rates,
1/parameters$du,
variables$state$get_index_of("A")$and(target)
)
Expand All @@ -58,7 +58,7 @@ recovery_outcome_process <- function(
"S",
variables$infectivity,
0,
variables$recovery_rates,
variables$progression_rates,
0,
variables$state$get_index_of(c("U","Tr"))$and(target)
)
Expand All @@ -73,19 +73,21 @@ recovery_outcome_process <- function(
#' @param to_state the destination disease state
#' @param infectivity the handle for the infectivity variable
#' @param new_infectivity the new infectivity of the progressed individuals
#' @param progression_rates the handle for the progression_rates variable
#' @param new_progression the new disease progression rate of the progressed individuals
#' @noRd
update_infection <- function(
state,
to_state,
infectivity,
new_infectivity,
recovery_rates,
new_recovery_rate,
progression_rates,
new_progression_rate,
to_move
) {
state$queue_update(to_state, to_move)
infectivity$queue_update(new_infectivity, to_move)
recovery_rates$queue_update(new_recovery_rate, to_move)
progression_rates$queue_update(new_progression_rate, to_move)
}

#' @title Modelling the progression to asymptomatic disease
Expand Down Expand Up @@ -115,7 +117,7 @@ update_to_asymptomatic_infection <- function(
new_infectivity,
to_move
)
variables$recovery_rates$queue_update(
variables$progression_rates$queue_update(
1/parameters$da,
to_move
)
Expand Down
124 changes: 82 additions & 42 deletions R/human_infection.R
Original file line number Diff line number Diff line change
Expand Up @@ -347,13 +347,73 @@ calculate_treated <- function(
)
])

successfully_treated <- calculate_successful_treatments(
parameters,
seek_treatment,
drugs,
timestep,
renderer,
""
)

if (successfully_treated$successfully_treated$size() > 0) {

if(parameters$antimalarial_resistance) {
dt_update_vector <- successfully_treated$dt_spc_combined
} else {
dt_update_vector <- parameters$dt
}

update_infection(
variables$state,
'Tr',
variables$infectivity,
parameters$cd * parameters$drug_rel_c[successfully_treated$drugs],
variables$progression_rates,
1/dt_update_vector,
successfully_treated$successfully_treated
)

variables$drug$queue_update(
successfully_treated$drugs,
successfully_treated$successfully_treated
)
variables$drug_time$queue_update(
timestep,
successfully_treated$successfully_treated
)
}

successfully_treated$successfully_treated

}


#' @title Calculate successfully treated humans
#' @description
#' Sample successful treatments based on drug efficacy and antimalarial resistance
#' @param parameters model parameters
#' @param target bitset of treated humans
#' @param drugs drug index
#' @param timestep the current timestep
#' @param renderer simulation renderer
#' @param int_name the intervention name to use for rendering, use "" for frontline treatment
#' @noRd
calculate_successful_treatments <- function(
parameters,
target,
drugs,
timestep,
renderer,
int_name){

#+++ DRUG EFFICACY +++#
#+++++++++++++++++++++#
effectively_treated_index <- bernoulli_multi_p(parameters$drug_efficacy[drugs])
effectively_treated <- bitset_at(seek_treatment, effectively_treated_index)
effectively_treated <- bitset_at(target, effectively_treated_index)
drugs <- drugs[effectively_treated_index]
n_drug_efficacy_failures <- n_treat - effectively_treated$size()
renderer$render('n_drug_efficacy_failures', n_drug_efficacy_failures, timestep)
n_drug_efficacy_failures <- target$size() - effectively_treated$size()
renderer$render(paste0('n_', int_name, 'drug_efficacy_failures'), n_drug_efficacy_failures, timestep)

#+++ ANTIMALARIAL RESISTANCE +++#
#+++++++++++++++++++++++++++++++#
Expand All @@ -370,7 +430,7 @@ calculate_treated <- function(
successfully_treated_indices <- bernoulli_multi_p(p = 1 - early_treatment_failure_probability)
successfully_treated <- bitset_at(effectively_treated, successfully_treated_indices)
n_early_treatment_failure <- effectively_treated$size() - successfully_treated$size()
renderer$render('n_early_treatment_failure', n_early_treatment_failure, timestep)
renderer$render(paste0('n_', int_name, 'early_treatment_failure'), n_early_treatment_failure, timestep)
drugs <- drugs[successfully_treated_indices]
dt_slow_parasite_clearance <- resistance_parameters$dt_slow_parasite_clearance[successfully_treated_indices]

Expand All @@ -380,51 +440,30 @@ calculate_treated <- function(
resistance_parameters$slow_parasite_clearance_probability[successfully_treated_indices]
slow_parasite_clearance_indices <- bernoulli_multi_p(p = slow_parasite_clearance_probability)
slow_parasite_clearance_individuals <- bitset_at(successfully_treated, slow_parasite_clearance_indices)
renderer$render('n_slow_parasite_clearance', slow_parasite_clearance_individuals$size(), timestep)
renderer$render(paste0('n_', int_name, 'slow_parasite_clearance'), slow_parasite_clearance_individuals$size(), timestep)
non_slow_parasite_clearance_individuals <- successfully_treated$copy()$set_difference(slow_parasite_clearance_individuals)
renderer$render('n_successfully_treated', successfully_treated$size(), timestep)
renderer$render(paste0('n_', int_name, 'successfully_treated'), successfully_treated$size(), timestep)
dt_slow_parasite_clearance <- dt_slow_parasite_clearance[slow_parasite_clearance_indices]

dt_spc_combined <- rep(parameters$dt, length(successfully_treated_indices))
dt_spc_combined[slow_parasite_clearance_indices] <- dt_slow_parasite_clearance

successfully_treated_list <- list(
drugs = drugs,
successfully_treated = successfully_treated,
dt_spc_combined = dt_spc_combined)

} else {

successfully_treated <- effectively_treated
renderer$render('n_successfully_treated', successfully_treated$size(), timestep)
renderer$render(paste0('n_', int_name, 'successfully_treated'), successfully_treated$size(), timestep)

successfully_treated_list <- list(
drugs = drugs,
successfully_treated = successfully_treated)

}

if (successfully_treated$size() > 0) {
variables$state$queue_update("Tr", successfully_treated)
variables$infectivity$queue_update(
parameters$cd * parameters$drug_rel_c[drugs],
successfully_treated
)
variables$drug$queue_update(
drugs,
successfully_treated
)
variables$drug_time$queue_update(
timestep,
successfully_treated
)
if(parameters$antimalarial_resistance) {
variables$recovery_rates$queue_update(
1/parameters$dt,
non_slow_parasite_clearance_individuals
)
variables$recovery_rates$queue_update(
1/dt_slow_parasite_clearance,
slow_parasite_clearance_individuals
)
} else {
variables$recovery_rates$queue_update(
1/parameters$dt,
successfully_treated
)
}
}

successfully_treated

successfully_treated_list
}

#' @title Schedule infections
Expand All @@ -444,6 +483,7 @@ schedule_infections <- function(
parameters,
timestep
) {

included <- treated$not(TRUE)

to_infect <- clinical_infections$and(included)
Expand All @@ -457,7 +497,7 @@ schedule_infections <- function(
'D',
variables$infectivity,
parameters$cd,
variables$recovery_rates,
variables$progression_rates,
1/parameters$dd,
to_infect
)
Expand Down
Loading
Loading