Skip to content

muhammadusman93/neurospf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NEUROSPF: A Tool For the Symbolic Analysis of Neural Networks

Section I - Instructions on installing JPF and SPF

SPF needs JPF-Core to work, so it is essential that JPF-Core is installed first.

Instructions on installing JPF-Core

JPF-Core is also provided as part of this repository. JPF-Core can be downloaded from https://github.com/javapathfinder/jpf-core. Detailed instructions are provided at the aforementioned repository.

Instructions on installing SPF

The following subsection gives the instructions on installing SPF. These instructions are taken from the original SPF GitHub Repository. https://github.com/SymbolicPathFinder/jpf-symbc


Symbolic (Java) PathFinder:

This JPF extension provides symbolic execution for Java bytecode. It performs a non-standard interpretation of byte-codes. It allows symbolic execution on methods with arguments of basic types (int, long, double, boolean, etc.). It also supports symbolic strings, arrays, and user-defined data structures.

SPF now has a "symcrete" mode that executes paths triggered by concrete inputs and collects constraints along the paths

A paper describing Symbolic PathFinder appeared at ISSTA'08:

Title: Combining Unit-level Symbolic Execution and System-level Concrete Execution for Testing NASA Software, Authors: C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. Lowry, S. Person, M. Pape. (DOI: https://dl.acm.org/doi/10.1145/1390630.1390635)

Getting Started

First of all please use Java 8 (I am afraid our tools do not work with older versions of Java).

Then please download jpf-core from here: https://github.com/yannicnoller/jpf-core/tree/0f2f2901cd0ae9833145c38fee57be03da90a64f

And jpf-symbc from here: https://github.com/SymbolicPathFinder/jpf-symbc

Import them in Eclipse as 2 Java projects. Also create a .jpf dir in your home directory and create in it a file called "site.properties" with the following content:

jpf-core = <path-to-jpf-core-folder>/jpf-core

jpf-symbc = <path-to-jpf-core-folder>/jpf-symbc

extensions=${jpf-core},${jpf-symbc}

You can then try to run some examples by selecting a .jpf file from the "examples" directory and then selecting a run configuration from the "Run" menu in Eclipse. In particular you should select: "run-JPF-symbc" to run Symbolic PathFinder on your example (configuration "run-JPF-symbc-mac" is tailored for Mac).

Good luck!

Additional Steps:


Section II: Instructions on running NEUROSPF

Command to run the Keras to Java Translator

python translator/java-dnn-gen.py --model kerasmodels/<kerasmodel>.h5 --outputs "<path to jpf-symbc>/jpf-symbc/src/examples/neurospf" -d <image file>

Sample Command to run the demo example.

python translator/java-dnn-gen.py --model kerasmodels/mnist-lowquality.h5 --outputs "<path to jpf-symbc>/jpf-symbc/src/examples/neurospf" -d demoimage

The above command will generate the required code files inside jpf-symbc/src/examples/neurospf directory. User can run the SPF-DNN.jpf file using jpf-symbc to generate adversarial images


Section III: Link to Demonstration Video

https://youtu.be/seal8fG78LI


Section IV: Neural Network Architectures

MNIST-LowQuality

DNN architecture is as follows.

    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d_1 (Conv2D)            (None, 26, 26, 2)         20        
    _________________________________________________________________
    activation_1 (Activation)    (None, 26, 26, 2)         0         
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 24, 24, 4)         76        
    _________________________________________________________________
    activation_2 (Activation)    (None, 24, 24, 4)         0         
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 12, 12, 4)         0         
    _________________________________________________________________
    flatten_1 (Flatten)          (None, 576)               0         
    _________________________________________________________________
    dense_1 (Dense)              (None, 128)               73856     
    _________________________________________________________________
    activation_3 (Activation)    (None, 128)               0         
    _________________________________________________________________
    dense_2 (Dense)              (None, 10)                1290      
    _________________________________________________________________
    activation_4 (Activation)    (None, 10)                0         
    =================================================================
    Total params: 75,242
    Trainable params: 75,242
    Non-trainable params: 0

MNIST-HighQuality

DNN architecture is as follows.

    Layer (type)                 Output Shape              Param #
    =================================================================
    conv2d_1 (Conv2D)            (None, 26, 26, 8)         80
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 13, 13, 8)         0
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 11, 11, 16)        1168
    _________________________________________________________________
    max_pooling2d_2 (MaxPooling2 (None, 5, 5, 16)          0
    _________________________________________________________________
    flatten_1 (Flatten)          (None, 400)               0
    _________________________________________________________________
    dense_1 (Dense)              (None, 100)               40100
    _________________________________________________________________
    dense_2 (Dense)              (None, 10)                1010
    =================================================================
    Total params: 42,358
    Trainable params: 42,358
    Non-trainable params: 0

CIFAR10

DNN architecture is as follows.

Layer (type)                 Output Shape              Param #
=================================================================
conv2d_1 (Conv2D)            (None, 30, 30, 32)        896
_________________________________________________________________
activation_1 (Activation)    (None, 30, 30, 32)        0
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 28, 28, 32)        9248
_________________________________________________________________
activation_2 (Activation)    (None, 28, 28, 32)        0
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 32)        0
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 12, 12, 64)        18496
_________________________________________________________________
activation_3 (Activation)    (None, 12, 12, 64)        0
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 10, 10, 64)        36928
_________________________________________________________________
activation_4 (Activation)    (None, 10, 10, 64)        0
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64)          0
_________________________________________________________________
flatten_1 (Flatten)          (None, 1600)              0
_________________________________________________________________
dense_1 (Dense)              (None, 512)               819712
_________________________________________________________________
activation_5 (Activation)    (None, 512)               0
_________________________________________________________________
dense_2 (Dense)              (None, 10)                5130
_________________________________________________________________
activation_6 (Activation)    (None, 10)                0
=================================================================
Total params: 890,410
Trainable params: 890,410
Non-trainable params: 0

Maintainers


License

This project is licensed under the MIT License - see the LICENSE file for details

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published