-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a simple Hodghin-Huxley benchmark
- Loading branch information
1 parent
9e8c8e0
commit e54ac0f
Showing
6 changed files
with
1,724 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
# Hodgkin-Huxley benchmark | ||
|
||
Adapted from | ||
[SciMLBenchmarks.jl](https://docs.sciml.ai/SciMLBenchmarksOutput/stable/NonStiffODE/LotkaVolterra_wpd/). | ||
|
||
```julia | ||
using LinearAlgebra, Statistics | ||
using DiffEqDevTools, ParameterizedFunctions, SciMLBase, OrdinaryDiffEq, Plots | ||
using ProbNumDiffEq | ||
|
||
# Plotting theme | ||
theme(:dao; | ||
markerstrokewidth=0.5, | ||
legend=:outertopright, | ||
bottom_margin=5Plots.mm, | ||
size = (1000, 400), | ||
) | ||
``` | ||
|
||
### Hodgkin-Huxley problem definition | ||
|
||
```julia | ||
αm(V, VT) = -0.32 * (V - VT - 13) / (exp(-(V - VT - 13) / 4) - 1) | ||
βm(V, VT) = 0.28 * (V - VT - 40) / (exp((V - VT - 40) / 5) - 1) | ||
|
||
αn(V, VT) = -0.032 * (V - VT - 15) / (exp(-(V - VT - 15) / 5) - 1) | ||
βn(V, VT) = 0.5 * exp(-(V - VT - 10) / 40) | ||
|
||
αh(V, VT) = 0.128 * exp(-(V - VT - 17) / 18) | ||
βh(V, VT) = 4 / (1 + exp(-(V - VT - 40) / 5)) | ||
|
||
|
||
I(t) = 500 | ||
|
||
function f(du, u, p, t) | ||
@unpack gNa, gK, ENa, EK, area, C, Eleak, VT, gleak = p | ||
|
||
V, m, n, h = u | ||
|
||
I_inj = I(t) * 1e-6 # uA | ||
|
||
du[2] = dmdt = (αm(V, VT) * (1 - m) - βm(V, VT) * m) | ||
du[3] = dndt = (αn(V, VT) * (1 - n) - βn(V, VT) * n) | ||
du[4] = dhdt = (αh(V, VT) * (1 - h) - βh(V, VT) * h) | ||
|
||
INa = gNa * m^3 * h * (V - ENa) * area | ||
IK = gK * n^4 * (V - EK) * area | ||
Ileak = gleak * (V - Eleak) * area | ||
Cm = C * area | ||
du[1] = dVdt = -(Ileak + INa + IK - I_inj) / Cm | ||
end | ||
|
||
p = (gNa=20.0, gK=15.0, ENa = 53, EK = -107, area = 15e-5, C = 1, Eleak = -70, VT = -60, gleak = 0.1, V0 = -70) | ||
|
||
m_inf(V, VT) = 1 / (1 + βm(V, VT) / αm(V, VT)) | ||
n_inf(V, VT) = 1 / (1 + βn(V, VT) / αn(V, VT)) | ||
h_inf(V, VT) = 1 / (1 + βh(V, VT) / αh(V, VT)) | ||
u0 = [p.V0, m_inf(p.V0, p.VT), n_inf(p.V0, p.VT), h_inf(p.V0, p.VT)] | ||
|
||
prob = ODEProblem{true,SciMLBase.FullSpecialize()}(f, u0, (0.0, 100.0), p) | ||
|
||
test_sol = solve(prob, Vern7(), abstol=1/10^14, reltol=1/10^14, dense=false) | ||
plot(test_sol, | ||
legend=false, | ||
layout=(4,1), | ||
title=["Hodgkin-Huxley Solution" "" "" ""], | ||
ylabel=["V(t)" "m(t)" "n(t)" "h(t)"], | ||
size = (1000, 600), | ||
) | ||
``` | ||
|
||
## Adaptive steps | ||
|
||
```julia | ||
DENSE = SAVE_EVERYSTEP = false | ||
|
||
_setups = [ | ||
"EK0(2)" => Dict(:alg=>EK0(order=2, smooth=DENSE)) | ||
"EK0(3)" => Dict(:alg=>EK0(order=3, smooth=DENSE)) | ||
"EK0(5)" => Dict(:alg=>EK0(order=5, smooth=DENSE)) | ||
"EK1(2)" => Dict(:alg=>EK1(order=2, smooth=DENSE)) | ||
"EK1(3)" => Dict(:alg=>EK1(order=3, smooth=DENSE)) | ||
"EK1(5)" => Dict(:alg=>EK1(order=5, smooth=DENSE)) | ||
"EK1(8)" => Dict(:alg=>EK1(order=8, smooth=DENSE)) | ||
"RosenbrockExpEK1(2)" => Dict(:alg=>RosenbrockExpEK(order=2, smooth=DENSE)) | ||
"RosenbrockExpEK1(3)" => Dict(:alg=>RosenbrockExpEK(order=3, smooth=DENSE)) | ||
"RosenbrockExpEK1(5)" => Dict(:alg=>RosenbrockExpEK(order=5, smooth=DENSE)) | ||
] | ||
|
||
labels = first.(_setups) | ||
setups = last.(_setups) | ||
colors = [1 1 1 2 2 2 2 3 3 3] | ||
|
||
abstols = 1.0 ./ 10.0 .^ (6:10) | ||
reltols = 1.0 ./ 10.0 .^ (3:7) | ||
|
||
wp = WorkPrecisionSet( | ||
prob, abstols, reltols, setups; | ||
names = labels, | ||
#print_names = true, | ||
appxsol = test_sol, | ||
dense = DENSE, | ||
save_everystep = SAVE_EVERYSTEP, | ||
numruns = 10, | ||
maxiters = Int(1e7), | ||
timeseries_errors = false, | ||
verbose = false, | ||
) | ||
|
||
plot( | ||
wp, | ||
title = "Hodgkin-Huxley with adaptive steps", | ||
color = colors, | ||
xticks = 10.0 .^ (-16:1:5), | ||
yticks = 10.0 .^ (-6:1:5), | ||
) | ||
``` | ||
|
||
|
||
## Fixed steps | ||
|
||
```julia | ||
DENSE = SAVE_EVERYSTEP = false | ||
|
||
dts = 10.0 .^ range(-1, -3, length=length(abstols)) | ||
|
||
DM = FixedDiffusion() | ||
_setups = [ | ||
"EK0(2)" => Dict(:alg=>EK0(order=2, diffusionmodel=DM, smooth=DENSE), :dts=>dts) | ||
"EK1(2)" => Dict(:alg=>EK1(order=2, diffusionmodel=DM, smooth=DENSE), :dts=>dts) | ||
"RosenbrockExpEK1(2)" => Dict(:alg=>RosenbrockExpEK(order=2, diffusionmodel=DM, smooth=DENSE), :dts=>dts) | ||
] | ||
|
||
labels = first.(_setups) | ||
setups = last.(_setups) | ||
colors = [1 2 3] | ||
|
||
wp = WorkPrecisionSet( | ||
prob, abstols, reltols, setups; | ||
names = labels, | ||
#print_names = true, | ||
appxsol = test_sol, | ||
dense = DENSE, | ||
save_everystep = SAVE_EVERYSTEP, | ||
numruns = 10, | ||
maxiters = Int(1e7), | ||
timeseries_errors = false, | ||
verbose = false, | ||
) | ||
|
||
plot( | ||
wp, | ||
title = "Hodgkin-Huxley with fixed steps", | ||
color = colors, | ||
xticks = 10.0 .^ (-16:1:5), | ||
yticks = 10.0 .^ (-6:1:5), | ||
) | ||
``` | ||
|
||
|
||
|
||
## Appendix | ||
|
||
Computer information: | ||
```julia | ||
using InteractiveUtils | ||
InteractiveUtils.versioninfo() | ||
``` | ||
|
||
Package Information: | ||
```julia | ||
using Pkg | ||
Pkg.status() | ||
``` | ||
|
||
And the full manifest: | ||
```julia | ||
Pkg.status(mode=Pkg.PKGMODE_MANIFEST) | ||
``` |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.