-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Pleiades as a second-order ODE benchmark
- Loading branch information
1 parent
4fa8fd6
commit f872e5d
Showing
8 changed files
with
1,151 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
# Pleiades benchmark | ||
|
||
```julia | ||
using LinearAlgebra, Statistics, InteractiveUtils | ||
using DiffEqDevTools, ParameterizedFunctions, SciMLBase, OrdinaryDiffEq, Sundials, Plots | ||
using ModelingToolkit | ||
using ProbNumDiffEq | ||
|
||
# Plotting theme | ||
theme(:dao; | ||
markerstrokewidth=0.5, | ||
legend=:outertopright, | ||
bottom_margin=5Plots.mm, | ||
size = (1000, 400), | ||
) | ||
``` | ||
|
||
### Pleiades problem definition | ||
|
||
```julia | ||
# first-order ODE | ||
@fastmath function pleiades(du, u, p, t) | ||
v = view(u, 1:7) # x | ||
w = view(u, 8:14) # y | ||
x = view(u, 15:21) # x′ | ||
y = view(u, 22:28) # y′ | ||
du[15:21] .= v | ||
du[22:28] .= w | ||
@inbounds @simd ivdep for i in 1:14 | ||
du[i] = zero(eltype(u)) | ||
end | ||
@inbounds @simd ivdep for i in 1:7 | ||
@inbounds @simd ivdep for j in 1:7 | ||
if i != j | ||
r = ((x[i] - x[j])^2 + (y[i] - y[j])^2)^(3 / 2) | ||
du[i] += j * (x[j] - x[i]) / r | ||
du[7+i] += j * (y[j] - y[i]) / r | ||
end | ||
end | ||
end | ||
end | ||
x0 = [3.0, 3.0, -1.0, -3.0, 2.0, -2.0, 2.0] | ||
y0 = [3.0, -3.0, 2.0, 0, 0, -4.0, 4.0] | ||
dx0 = [0, 0, 0, 0, 0, 1.75, -1.5] | ||
dy0 = [0, 0, 0, -1.25, 1, 0, 0] | ||
u0 = [dx0; dy0; x0; y0] | ||
tspan = (0.0, 3.0) | ||
prob1 = ODEProblem(pleiades, u0, tspan) | ||
|
||
# second-order ODE | ||
function pleiades2(ddu, du, u, p, t) | ||
x = view(u, 1:7) | ||
y = view(u, 8:14) | ||
for i in 1:14 | ||
ddu[i] = zero(eltype(u)) | ||
end | ||
for i in 1:7, j in 1:7 | ||
if i != j | ||
r = ((x[i] - x[j])^2 + (y[i] - y[j])^2)^(3 / 2) | ||
ddu[i] += j * (x[j] - x[i]) / r | ||
ddu[7+i] += j * (y[j] - y[i]) / r | ||
end | ||
end | ||
end | ||
u0 = [x0; y0] | ||
du0 = [dx0; dy0] | ||
prob2 = SecondOrderODEProblem(pleiades2, du0, u0, tspan) | ||
probs = [prob1, prob2] | ||
|
||
ref_sol1 = solve(prob1, Vern9(), abstol=1/10^14, reltol=1/10^14, dense=false) | ||
ref_sol2 = solve(prob2, Vern9(), abstol=1/10^14, reltol=1/10^14, dense=false) | ||
ref_sols = [ref_sol1, ref_sol2] | ||
|
||
plot(ref_sol1, idxs=[(14+i,21+i) for i in 1:7], title="Pleiades Solution", legend=false) | ||
scatter!(ref_sol1.u[end][15:21], ref_sol1.u[end][22:end], color=1:7) | ||
``` | ||
|
||
## First-order ODE vs. second-order ODE | ||
```julia | ||
DENSE = false; | ||
SAVE_EVERYSTEP = false; | ||
|
||
_setups = [ | ||
"EK0(3) (1st order ODE)" => Dict(:alg => EK0(order=3, smooth=DENSE), :prob_choice => 1) | ||
"EK0(5) (1st order ODE)" => Dict(:alg => EK0(order=5, smooth=DENSE), :prob_choice => 1) | ||
"EK1(3) (1st order ODE)" => Dict(:alg => EK1(order=3, smooth=DENSE), :prob_choice => 1) | ||
"EK1(5) (1st order ODE)" => Dict(:alg => EK1(order=5, smooth=DENSE), :prob_choice => 1) | ||
"EK0(4) (2nd order ODE)" => Dict(:alg => EK0(order=4, smooth=DENSE), :prob_choice => 2) | ||
"EK0(6) (2nd order ODE)" => Dict(:alg => EK0(order=6, smooth=DENSE), :prob_choice => 2) | ||
"EK1(4) (2nd order ODE)" => Dict(:alg => EK1(order=4, smooth=DENSE), :prob_choice => 2) | ||
"EK1(6) (2nd order ODE)" => Dict(:alg => EK1(order=6, smooth=DENSE), :prob_choice => 2) | ||
] | ||
|
||
labels = first.(_setups) | ||
setups = last.(_setups) | ||
|
||
abstols = 1.0 ./ 10.0 .^ (6:11) | ||
reltols = 1.0 ./ 10.0 .^ (3:8) | ||
|
||
wp = WorkPrecisionSet( | ||
probs, abstols, reltols, setups; | ||
names = labels, | ||
#print_names = true, | ||
appxsol = ref_sols, | ||
dense = DENSE, | ||
save_everystep = SAVE_EVERYSTEP, | ||
numruns = 10, | ||
maxiters = Int(1e7), | ||
timeseries_errors = false, | ||
verbose = false, | ||
) | ||
|
||
plot(wp, color=[1 1 2 2 3 3 4 4], | ||
# xticks = 10.0 .^ (-16:1:5) | ||
) | ||
``` | ||
|
||
|
||
## Conclusion | ||
|
||
- If the problem is a second-order ODE, _implement it as a second-order ODE_! | ||
Just use `SecondOrderODEProblem`. | ||
|
||
|
||
## Appendix | ||
|
||
Computer information: | ||
|
||
```julia | ||
InteractiveUtils.versioninfo() | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# Pleiades benchmark | ||
|
||
```julia | ||
using LinearAlgebra, Statistics, InteractiveUtils | ||
using DiffEqDevTools, ParameterizedFunctions, SciMLBase, OrdinaryDiffEq, Sundials, Plots | ||
using ModelingToolkit | ||
using ProbNumDiffEq | ||
|
||
# Plotting theme | ||
theme(:dao; | ||
markerstrokewidth=0.5, | ||
legend=:outertopright, | ||
bottom_margin=5Plots.mm, | ||
size = (1000, 400), | ||
) | ||
``` | ||
|
||
|
||
|
||
|
||
### Pleiades problem definition | ||
|
||
```julia | ||
# first-order ODE | ||
@fastmath function pleiades(du, u, p, t) | ||
v = view(u, 1:7) # x | ||
w = view(u, 8:14) # y | ||
x = view(u, 15:21) # x′ | ||
y = view(u, 22:28) # y′ | ||
du[15:21] .= v | ||
du[22:28] .= w | ||
@inbounds @simd ivdep for i in 1:14 | ||
du[i] = zero(eltype(u)) | ||
end | ||
@inbounds @simd ivdep for i in 1:7 | ||
@inbounds @simd ivdep for j in 1:7 | ||
if i != j | ||
r = ((x[i] - x[j])^2 + (y[i] - y[j])^2)^(3 / 2) | ||
du[i] += j * (x[j] - x[i]) / r | ||
du[7+i] += j * (y[j] - y[i]) / r | ||
end | ||
end | ||
end | ||
end | ||
x0 = [3.0, 3.0, -1.0, -3.0, 2.0, -2.0, 2.0] | ||
y0 = [3.0, -3.0, 2.0, 0, 0, -4.0, 4.0] | ||
dx0 = [0, 0, 0, 0, 0, 1.75, -1.5] | ||
dy0 = [0, 0, 0, -1.25, 1, 0, 0] | ||
u0 = [dx0; dy0; x0; y0] | ||
tspan = (0.0, 3.0) | ||
prob1 = ODEProblem(pleiades, u0, tspan) | ||
|
||
# second-order ODE | ||
function pleiades2(ddu, du, u, p, t) | ||
x = view(u, 1:7) | ||
y = view(u, 8:14) | ||
for i in 1:14 | ||
ddu[i] = zero(eltype(u)) | ||
end | ||
for i in 1:7, j in 1:7 | ||
if i != j | ||
r = ((x[i] - x[j])^2 + (y[i] - y[j])^2)^(3 / 2) | ||
ddu[i] += j * (x[j] - x[i]) / r | ||
ddu[7+i] += j * (y[j] - y[i]) / r | ||
end | ||
end | ||
end | ||
u0 = [x0; y0] | ||
du0 = [dx0; dy0] | ||
prob2 = SecondOrderODEProblem(pleiades2, du0, u0, tspan) | ||
probs = [prob1, prob2] | ||
|
||
ref_sol1 = solve(prob1, Vern9(), abstol=1/10^14, reltol=1/10^14, dense=false) | ||
ref_sol2 = solve(prob2, Vern9(), abstol=1/10^14, reltol=1/10^14, dense=false) | ||
ref_sols = [ref_sol1, ref_sol2] | ||
|
||
plot(ref_sol1, idxs=[(14+i,21+i) for i in 1:7], title="Pleiades Solution", legend=false) | ||
scatter!(ref_sol1.u[end][15:21], ref_sol1.u[end][22:end], color=1:7) | ||
``` | ||
|
||
![](figures/pleiades_2_1.svg) | ||
|
||
|
||
|
||
## First-order ODE vs. second-order ODE | ||
```julia | ||
DENSE = false; | ||
SAVE_EVERYSTEP = false; | ||
|
||
_setups = [ | ||
"EK0(3) (1st order ODE)" => Dict(:alg => EK0(order=3, smooth=DENSE), :prob_choice => 1) | ||
"EK0(5) (1st order ODE)" => Dict(:alg => EK0(order=5, smooth=DENSE), :prob_choice => 1) | ||
"EK1(3) (1st order ODE)" => Dict(:alg => EK1(order=3, smooth=DENSE), :prob_choice => 1) | ||
"EK1(5) (1st order ODE)" => Dict(:alg => EK1(order=5, smooth=DENSE), :prob_choice => 1) | ||
"EK0(4) (2nd order ODE)" => Dict(:alg => EK0(order=4, smooth=DENSE), :prob_choice => 2) | ||
"EK0(6) (2nd order ODE)" => Dict(:alg => EK0(order=6, smooth=DENSE), :prob_choice => 2) | ||
"EK1(4) (2nd order ODE)" => Dict(:alg => EK1(order=4, smooth=DENSE), :prob_choice => 2) | ||
"EK1(6) (2nd order ODE)" => Dict(:alg => EK1(order=6, smooth=DENSE), :prob_choice => 2) | ||
] | ||
|
||
labels = first.(_setups) | ||
setups = last.(_setups) | ||
|
||
abstols = 1.0 ./ 10.0 .^ (6:11) | ||
reltols = 1.0 ./ 10.0 .^ (3:8) | ||
|
||
wp = WorkPrecisionSet( | ||
probs, abstols, reltols, setups; | ||
names = labels, | ||
#print_names = true, | ||
appxsol = ref_sols, | ||
dense = DENSE, | ||
save_everystep = SAVE_EVERYSTEP, | ||
numruns = 10, | ||
maxiters = Int(1e7), | ||
timeseries_errors = false, | ||
verbose = false, | ||
) | ||
|
||
plot(wp, color=[1 1 2 2 3 3 4 4], | ||
# xticks = 10.0 .^ (-16:1:5) | ||
) | ||
``` | ||
|
||
![](figures/pleiades_3_1.svg) | ||
|
||
|
||
|
||
|
||
## Conclusion | ||
|
||
- If the problem is a second-order ODE, _implement it as a second-order ODE_! | ||
Just use `SecondOrderODEProblem`. | ||
|
||
|
||
## Appendix | ||
|
||
Computer information: | ||
|
||
```julia | ||
InteractiveUtils.versioninfo() | ||
``` | ||
|
||
``` | ||
Julia Version 1.9.3 | ||
Commit bed2cd540a1 (2023-08-24 14:43 UTC) | ||
Build Info: | ||
Official https://julialang.org/ release | ||
Platform Info: | ||
OS: Linux (x86_64-linux-gnu) | ||
CPU: 12 × Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz | ||
WORD_SIZE: 64 | ||
LIBM: libopenlibm | ||
LLVM: libLLVM-14.0.6 (ORCJIT, broadwell) | ||
Threads: 12 on 12 virtual cores | ||
Environment: | ||
JULIA_NUM_THREADS = auto | ||
JULIA_STACKTRACE_MINIMAL = true | ||
``` | ||
|
||
|