Skip to content

Commit

Permalink
Example cleanup
Browse files Browse the repository at this point in the history
  • Loading branch information
brentyi committed Sep 25, 2024
1 parent a691956 commit 2f8bdc2
Show file tree
Hide file tree
Showing 5 changed files with 22 additions and 53 deletions.
3 changes: 2 additions & 1 deletion docs/source/examples/07_record3d_visualizer.rst
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,11 @@ Parse and stream record3d captures. To get the demo data, see ``./assets/downloa
import numpy as np
import tyro
from tqdm.auto import tqdm
import viser
import viser.extras
import viser.transforms as tf
from tqdm.auto import tqdm
def main(
Expand Down
8 changes: 2 additions & 6 deletions docs/source/examples/08_smpl_visualizer.rst
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@ See here for download instructions:
import numpy as np
import tyro
import viser
import viser.transforms as tf
Expand Down Expand Up @@ -207,12 +206,9 @@ See here for download instructions:
@gui_random_joints.on_click
def _(_):
rng = np.random.default_rng()
for joint in gui_joints:
# It's hard to uniformly sample orientations directly in so(3), so we
# first sample on S^3 and then convert.
quat = np.random.normal(loc=0.0, scale=1.0, size=(4,))
quat /= np.linalg.norm(quat)
joint.value = tf.SO3(wxyz=quat).log()
joint.value = tf.SO3.sample_uniform(rng).log()
gui_joints: list[viser.GuiInputHandle[tuple[float, float, float]]] = []
for i in range(num_joints):
Expand Down
28 changes: 8 additions & 20 deletions docs/source/examples/25_smpl_visualizer_skinned.rst
Original file line number Diff line number Diff line change
Expand Up @@ -25,21 +25,18 @@ See here for download instructions:
import numpy as np
import tyro
import viser
import viser.transforms as tf
@dataclass(frozen=True)
class SmplOutputs:
vertices: np.ndarray
faces: np.ndarray
class SmplFkOutputs:
T_world_joint: np.ndarray # (num_joints, 4, 4)
T_parent_joint: np.ndarray # (num_joints, 4, 4)
class SmplHelper:
"""Helper for models in the SMPL family, implemented in numpy."""
"""Helper for models in the SMPL family, implemented in numpy. Does not include blend skinning."""
def __init__(self, model_path: Path) -> None:
assert model_path.suffix.lower() == ".npz", "Model should be an .npz file!"
Expand All @@ -62,7 +59,9 @@ See here for download instructions:
j_tpose = np.einsum("jv,vx->jx", self.J_regressor, v_tpose)
return v_tpose, j_tpose
def get_outputs(self, betas: np.ndarray, joint_rotmats: np.ndarray) -> SmplOutputs:
def get_outputs(
self, betas: np.ndarray, joint_rotmats: np.ndarray
) -> SmplFkOutputs:
# Get shaped vertices + joint positions, when all local poses are identity.
v_tpose = self.v_template + np.einsum("vxb,b->vx", self.shapedirs, betas)
j_tpose = np.einsum("jv,vx->jx", self.J_regressor, v_tpose)
Expand All @@ -78,15 +77,7 @@ See here for download instructions:
for i in range(1, self.num_joints):
T_world_joint[i] = T_world_joint[self.parent_idx[i]] @ T_parent_joint[i]
# Linear blend skinning.
pose_delta = (joint_rotmats[1:, ...] - np.eye(3)).flatten()
v_blend = v_tpose + np.einsum("byn,n->by", self.posedirs, pose_delta)
v_delta = np.ones((v_blend.shape[0], self.num_joints, 4))
v_delta[:, :, :3] = v_blend[:, None, :] - j_tpose[None, :, :]
v_posed = np.einsum(
"jxy,vj,vjy->vx", T_world_joint[:, :3, :], self.weights, v_delta
)
return SmplOutputs(v_posed, self.faces, T_world_joint, T_parent_joint)
return SmplFkOutputs(T_world_joint, T_parent_joint)
def main(model_path: Path) -> None:
Expand Down Expand Up @@ -252,12 +243,9 @@ See here for download instructions:
@gui_random_joints.on_click
def _(_):
rng = np.random.default_rng()
for joint in gui_joints:
# It's hard to uniformly sample orientations directly in so(3), so we
# first sample on S^3 and then convert.
quat = np.random.normal(loc=0.0, scale=1.0, size=(4,))
quat /= np.linalg.norm(quat)
joint.value = tf.SO3(wxyz=quat).log()
joint.value = tf.SO3.sample_uniform(rng).log()
gui_joints: List[viser.GuiInputHandle[Tuple[float, float, float]]] = []
for i in range(num_joints):
Expand Down
8 changes: 2 additions & 6 deletions examples/08_smpl_visualizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@

import numpy as np
import tyro

import viser
import viser.transforms as tf

Expand Down Expand Up @@ -197,12 +196,9 @@ def _(_):

@gui_random_joints.on_click
def _(_):
rng = np.random.default_rng()
for joint in gui_joints:
# It's hard to uniformly sample orientations directly in so(3), so we
# first sample on S^3 and then convert.
quat = np.random.normal(loc=0.0, scale=1.0, size=(4,))
quat /= np.linalg.norm(quat)
joint.value = tf.SO3(wxyz=quat).log()
joint.value = tf.SO3.sample_uniform(rng).log()

gui_joints: list[viser.GuiInputHandle[tuple[float, float, float]]] = []
for i in range(num_joints):
Expand Down
28 changes: 8 additions & 20 deletions examples/25_smpl_visualizer_skinned.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,21 +20,18 @@

import numpy as np
import tyro

import viser
import viser.transforms as tf


@dataclass(frozen=True)
class SmplOutputs:
vertices: np.ndarray
faces: np.ndarray
class SmplFkOutputs:
T_world_joint: np.ndarray # (num_joints, 4, 4)
T_parent_joint: np.ndarray # (num_joints, 4, 4)


class SmplHelper:
"""Helper for models in the SMPL family, implemented in numpy."""
"""Helper for models in the SMPL family, implemented in numpy. Does not include blend skinning."""

def __init__(self, model_path: Path) -> None:
assert model_path.suffix.lower() == ".npz", "Model should be an .npz file!"
Expand All @@ -57,7 +54,9 @@ def get_tpose(self, betas: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
j_tpose = np.einsum("jv,vx->jx", self.J_regressor, v_tpose)
return v_tpose, j_tpose

def get_outputs(self, betas: np.ndarray, joint_rotmats: np.ndarray) -> SmplOutputs:
def get_outputs(
self, betas: np.ndarray, joint_rotmats: np.ndarray
) -> SmplFkOutputs:
# Get shaped vertices + joint positions, when all local poses are identity.
v_tpose = self.v_template + np.einsum("vxb,b->vx", self.shapedirs, betas)
j_tpose = np.einsum("jv,vx->jx", self.J_regressor, v_tpose)
Expand All @@ -73,15 +72,7 @@ def get_outputs(self, betas: np.ndarray, joint_rotmats: np.ndarray) -> SmplOutpu
for i in range(1, self.num_joints):
T_world_joint[i] = T_world_joint[self.parent_idx[i]] @ T_parent_joint[i]

# Linear blend skinning.
pose_delta = (joint_rotmats[1:, ...] - np.eye(3)).flatten()
v_blend = v_tpose + np.einsum("byn,n->by", self.posedirs, pose_delta)
v_delta = np.ones((v_blend.shape[0], self.num_joints, 4))
v_delta[:, :, :3] = v_blend[:, None, :] - j_tpose[None, :, :]
v_posed = np.einsum(
"jxy,vj,vjy->vx", T_world_joint[:, :3, :], self.weights, v_delta
)
return SmplOutputs(v_posed, self.faces, T_world_joint, T_parent_joint)
return SmplFkOutputs(T_world_joint, T_parent_joint)


def main(model_path: Path) -> None:
Expand Down Expand Up @@ -247,12 +238,9 @@ def _(_):

@gui_random_joints.on_click
def _(_):
rng = np.random.default_rng()
for joint in gui_joints:
# It's hard to uniformly sample orientations directly in so(3), so we
# first sample on S^3 and then convert.
quat = np.random.normal(loc=0.0, scale=1.0, size=(4,))
quat /= np.linalg.norm(quat)
joint.value = tf.SO3(wxyz=quat).log()
joint.value = tf.SO3.sample_uniform(rng).log()

gui_joints: List[viser.GuiInputHandle[Tuple[float, float, float]]] = []
for i in range(num_joints):
Expand Down

0 comments on commit 2f8bdc2

Please sign in to comment.