Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Preserve sparsity SPARSEGPT #2282

Merged
merged 4 commits into from
May 17, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions src/sparseml/modifiers/obcq/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,9 @@ class SparseGPTModifier(Modifier):
:param block_size: Used to determine number of columns to compress in one pass
:param dampening_frac: Amount of dampening to apply to H, as a fraction of the
diagonal norm
:param preserve_sparsity_mask: Whether or not to preserve the sparsity mask
during when applying sparsegpt, this becomes useful when starting from a
previously pruned model, defaults to False.
"""

sparsity: Union[float, List[float]] = 0.0
Expand All @@ -68,6 +71,7 @@ class SparseGPTModifier(Modifier):
prunem_: Optional[int] = None
block_size: int = 128
dampening_frac: Optional[float] = 0.01
preserve_sparsity_mask: bool = False

def on_initialize_structure(self, state: State, **kwargs):
"""
Expand Down
1 change: 1 addition & 0 deletions src/sparseml/modifiers/obcq/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -203,6 +203,7 @@ def _compression_arguments(self, sparsity):
"prunem": self.prunem_,
"blocksize": self.block_size,
"percdamp": self.dampening_frac,
"preserve_sparsity_mask": self.preserve_sparsity_mask,
}

def _compression_class(self):
Expand Down
41 changes: 38 additions & 3 deletions src/sparseml/modifiers/obcq/utils/sgpt_wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,7 @@ def fasterprune(
prunem: int = 0,
blocksize: int = 128,
percdamp: float = 0.01,
preserve_sparsity_mask: bool = False,
):
"""
Run pruning and quantization(if applicable) on the layer up to the target
Expand All @@ -95,6 +96,7 @@ def fasterprune(
:param blocksize: Number of columns to compress in one pass
:param percdamp: Amount of dampening to apply to H, as a fraction of the
diagonal norm
:param preserve_sparsity_mask: Extend or ignore the base sparsity mask
"""
final_shape = self.layer.weight.shape
final_dtype = self.layer.weight.dtype
Expand Down Expand Up @@ -123,6 +125,13 @@ def fasterprune(
Hinv = self.H

mask = None
if preserve_sparsity_mask:
# compute existing sparsity mask
mask = torch.where(
W == 0,
torch.tensor(1, dtype=torch.bool),
torch.tensor(0, dtype=torch.bool),
)

# See section 3.4 of https://arxiv.org/abs/2203.07259
for i1 in range(0, self.columns, blocksize):
Expand All @@ -138,20 +147,41 @@ def fasterprune(
if prunen == 0:
if mask is not None:
mask1 = mask[:, i1:i2]
if int(W1.numel() * sparsity) > mask1.sum():
# target sparsity is higher than base sparsity, extend mask1
tmp = (
(~mask[:, i1:i2])
* W1**2
/ (torch.diag(Hinv1).reshape((1, -1))) ** 2
)
thresh = torch.sort(tmp.flatten())[0][
int(tmp.numel() * sparsity)
]
mask1 = tmp <= thresh
else:
raise ValueError(
"The target sparsity is lower than the sparsity "
"of the base model. Please retry "
"after turning preserve_sparsity_mask=False"
)
else:
tmp = W1**2 / (torch.diag(Hinv1).reshape((1, -1))) ** 2
thresh = torch.sort(tmp.flatten())[0][int(tmp.numel() * sparsity)]
mask1 = tmp <= thresh
else:
mask1 = torch.zeros_like(W1) == 1
if mask is not None:
mask1 = mask[:, i1:i2]
else:
mask1 = torch.zeros_like(W1) == 1

for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]

if prunen != 0 and i % prunem == 0:
tmp = (
W1[:, i : (i + prunem)] ** 2
(~mask[:, i : (i + prunem)])
* W1[:, i : (i + prunem)] ** 2
/ (torch.diag(Hinv1)[i : (i + prunem)].reshape((1, -1))) ** 2
)
mask1.scatter_(
Expand All @@ -174,7 +204,12 @@ def fasterprune(
W[:, i1:i2] = Q1
Losses += torch.sum(Losses1, 1) / 2

W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
if preserve_sparsity_mask:
# respect the sparsity of other groups
# really not needed, but kept for explicitness
W[:, i2:] -= (~mask[:, i2:]) * Err1.matmul(Hinv[i1:i2, i2:])
else:
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])

_LOGGER.info("time %.2f" % (time.time() - tick))
_LOGGER.info("error %.2f" % torch.sum(Losses).item())
Expand Down
24 changes: 24 additions & 0 deletions src/sparseml/modifiers/quantization/gptq/utils/gptq_wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@

import time

from sparseml.modifiers.utils import SPARSITY_THRESHOLD
from sparseml.modifiers.utils.compression_wrapper import ModuleCompressionWrapper


Expand Down Expand Up @@ -92,6 +93,7 @@ def fasterprune(
final_shape = self.layer.weight.shape
final_dtype = self.layer.weight.dtype
W = self.layer.weight.data.clone()
from sparseml.pytorch.utils.helpers import tensor_sparsity

if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
Expand All @@ -115,6 +117,17 @@ def fasterprune(
self.H = torch.linalg.cholesky(self.H, upper=True)
Hinv = self.H

sparsity = tensor_sparsity(W)
mask = (
torch.where(
W == 0,
torch.tensor(1, dtype=torch.bool),
torch.tensor(0, dtype=torch.bool),
)
if sparsity >= SPARSITY_THRESHOLD
else None
)

# See section 3.4 of https://arxiv.org/abs/2203.07259
for i1 in range(0, self.columns, blocksize):
i2 = min(i1 + blocksize, self.columns)
Expand All @@ -126,11 +139,22 @@ def fasterprune(
Losses1 = torch.zeros_like(W1)
Hinv1 = Hinv[i1:i2, i1:i2]

if sparsity >= SPARSITY_THRESHOLD:
tmp = (
(~mask[:, i1:i2])
* W1**2
/ (torch.diag(Hinv1).reshape((1, -1))) ** 2
)
thresh = torch.sort(tmp.flatten())[0][int(tmp.numel() * sparsity)]
mask1 = tmp <= thresh

for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]

q = w.clone()
if sparsity >= SPARSITY_THRESHOLD:
q[mask1[:, i]] = 0

if hasattr(self.layer, "weight_fake_quant"):
scale = self.layer.weight_fake_quant.scale
Expand Down
4 changes: 4 additions & 0 deletions src/sparseml/modifiers/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,3 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# flake8: noqa

from .constants import *
18 changes: 18 additions & 0 deletions src/sparseml/modifiers/utils/constants.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


__all__ = ["SPARSITY_THRESHOLD"]

SPARSITY_THRESHOLD: float = 0.05
2 changes: 1 addition & 1 deletion tests/sparseml/transformers/obcq/test_consecutive_runs.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ def setUp(self):
self.output_second = Path(self.output) / "test_2"

def test_consecutive_runs_small(self):
self._test_consecutive_runs(tolerance=1e-1)
self._test_consecutive_runs(tolerance=1e-3)


@requires_gpu
Expand Down