Including gaze, valid, pretrained model
source download_model.sh
You can change the pytorch, torchvision version (in build_environment.sh) to fit your GPU
source build_environment.sh $ENV_NAME
Put TEyeD dataset directory at $PATH. The preprocessed data will be under $PATH/TEyeD
python3 Dikablis_preprocess.py --root $PATH
Please refer to the directory tree in Neurobit_data.py
python3 Neurobit_data.py --root $ROOT --data_dir $DATA_PATH
python3 train_gaze.py --data_dir $PATH/TEyeD --dataset TEyeD
python3 train_gaze.py --data_dir $NEUROBIT_DATA_PATH --dataset Neurobit
python3 train_gaze.py --data_dir $PATH/TEyeD --dataset TEyeD
python3 gaze_visualization.py --video_dir $INPUT_VIDEO_DIR
- https://arxiv.org/pdf/1807.10002.pdf
- https://arxiv.org/abs/2102.02115
- https://github.com/milesial/Pytorch-UNet
- https://github.com/princeton-vl/pytorch_stacked_hourglass
- Appearance-based Gaze Estimation in the Wild, X. Zhang, Y. Sugano, M. Fritz and A. Bulling, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June, p.4511-4520, (2015).
- @inproceedings{zhang15_cvpr, Author = {Xucong Zhang and Yusuke Sugano and Mario Fritz and Bulling, Andreas}, Title = {Appearance-based Gaze Estimation in the Wild}, Booktitle = {Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, Year = {2015}, Month = {June} Pages = {4511-4520} }
- @article{ICML2021DS, title={TEyeD: Over 20 million real-world eye images with Pupil, Eyelid, and Iris 2D and 3D Segmentations, 2D and 3D Landmarks, 3D Eyeball, Gaze Vector, and Eye Movement Types}, author={Fuhl, Wolfgang and Kasneci, Gjergji and Kasneci, Enkelejda}, journal={arXiv preprint arXiv:2102.02115}, year={2021} }