-
Notifications
You must be signed in to change notification settings - Fork 85
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
462 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
from gymnasium.envs.registration import register | ||
|
||
register( | ||
id="StateSwitching-v0", | ||
entry_point="neurolib.control.reinforcement_learning.environments.state_switching:StateSwitchingEnv", | ||
) |
1 change: 1 addition & 0 deletions
1
neurolib/control/reinforcement_learning/environments/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from neurolib.control.reinforcement_learning.environments.state_switching import StateSwitchingEnv |
123 changes: 123 additions & 0 deletions
123
neurolib/control/reinforcement_learning/environments/state_switching.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
from neurolib.utils.stimulus import ZeroInput | ||
|
||
import numpy as np | ||
|
||
import gymnasium as gym | ||
from gymnasium import spaces | ||
|
||
from neurolib.models.wc import WCModel | ||
|
||
|
||
class StateSwitchingEnv(gym.Env): | ||
|
||
def __init__( | ||
self, | ||
duration=200, | ||
dt=0.1, | ||
target="up", | ||
exc_ext_baseline=2.9, | ||
inh_ext_baseline=3.3, | ||
control_strength_loss_scale=0.005, | ||
): | ||
self.exc_ext_baseline = exc_ext_baseline | ||
self.inh_ext_baseline = inh_ext_baseline | ||
self.compute_up_and_down_states() | ||
|
||
self.duration = duration | ||
self.dt = dt | ||
self.target = target | ||
self.control_strength_loss_scale = control_strength_loss_scale | ||
|
||
assert self.target in ("up", "down") | ||
if self.target == "up": | ||
self.targetstate = self.upstate | ||
self.initstate = self.downstate | ||
elif self.target == "down": | ||
self.targetstate = self.downstate | ||
self.initstate = self.upstate | ||
|
||
self.model = WCModel() | ||
self.model.params["dt"] = self.dt | ||
self.model.params["duration"] = self.dt # one step at a time | ||
self.model.params["exc_init"] = np.array([[self.initstate[0]]]) | ||
self.model.params["inh_init"] = np.array([[self.initstate[1]]]) | ||
self.model.params["exc_ext_baseline"] = self.exc_ext_baseline | ||
self.model.params["inh_ext_baseline"] = self.inh_ext_baseline | ||
|
||
self.n_steps = round(self.duration / self.dt) | ||
|
||
self.observation_space = spaces.Dict( | ||
{ | ||
"exc": spaces.Box(0, 1, shape=(1,), dtype=float), | ||
"inh": spaces.Box(0, 1, shape=(1,), dtype=float), | ||
} | ||
) | ||
|
||
self.action_space = spaces.Tuple( | ||
( | ||
spaces.Box(-5, 5, shape=(1,), dtype=float), # exc | ||
spaces.Box(-5, 5, shape=(1,), dtype=float), # inh | ||
) | ||
) | ||
|
||
def compute_up_and_down_states(self): | ||
model = WCModel() | ||
|
||
dt = model.params["dt"] | ||
duration = 500 | ||
model.params["duration"] = duration | ||
|
||
zero_input = ZeroInput().generate_input(duration=duration + dt, dt=dt) | ||
bi_control = zero_input.copy() | ||
bi_control[0, :500] = -5.0 | ||
bi_control[0, 2500:3000] = +5.0 | ||
|
||
model.params["exc_ext_baseline"] = self.exc_ext_baseline | ||
model.params["inh_ext_baseline"] = self.inh_ext_baseline | ||
model.params["exc_ext"] = bi_control | ||
model.params["inh_ext"] = zero_input | ||
model.run() | ||
self.downstate = [model.exc[0, 2000], model.inh[0, 2000]] | ||
self.upstate = [model.exc[0, -1], model.inh[0, -1]] | ||
|
||
def _get_obs(self): | ||
return {"exc": self.model.exc[0], "inh": self.model.inh[0]} | ||
|
||
def _get_info(self): | ||
return {"t": self.t_i * self.dt} | ||
|
||
def reset(self, seed=None, options=None): | ||
super().reset(seed=seed, options=options) | ||
self.t_i = 0 | ||
self.model.clearModelState() | ||
|
||
self.model.params["exc_init"] = np.array([[self.initstate[0]]]) | ||
self.model.params["inh_init"] = np.array([[self.initstate[1]]]) | ||
self.model.exc = np.array([[self.initstate[0]]]) | ||
self.model.inh = np.array([[self.initstate[1]]]) | ||
|
||
observation = self._get_obs() | ||
info = self._get_info() | ||
return observation, info | ||
|
||
def _loss(self, obs, action): | ||
accuracy_loss = abs(self.targetstate[0] - obs["exc"].item()) + abs(self.targetstate[1] - obs["inh"].item()) | ||
# exc_ext, inh_ext = action | ||
control_strength_loss = np.abs(action).sum() * self.control_strength_loss_scale | ||
return accuracy_loss + control_strength_loss | ||
|
||
def step(self, action): | ||
exc, inh = action | ||
self.model.params["exc_ext"] = np.array([exc]) | ||
self.model.params["inh_ext"] = np.array([inh]) | ||
self.model.run(continue_run=True) | ||
|
||
observation = self._get_obs() | ||
|
||
reward = -self._loss(observation, action) | ||
|
||
self.t_i += 1 | ||
terminated = self.t_i >= self.n_steps | ||
info = self._get_info() | ||
|
||
return observation, reward, terminated, False, info |