-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
264 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,264 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"name": "HITS.ipynb", | ||
"private_outputs": true, | ||
"provenance": [], | ||
"collapsed_sections": [], | ||
"authorship_tag": "ABX9TyN4Xg++97xwPc2Nr8C+c6hx", | ||
"include_colab_link": true | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
}, | ||
"language_info": { | ||
"name": "python" | ||
}, | ||
"accelerator": "GPU" | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "view-in-github", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"<a href=\"https://colab.research.google.com/github/nickprock/influencer/blob/master/notebook/HITS.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"import numpy as np\n", | ||
"import torch" | ||
], | ||
"metadata": { | ||
"id": "Yl-axB2vbPSR" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"!pip install git+https://github.com/nickprock/influencer.git" | ||
], | ||
"metadata": { | ||
"id": "wSSHSYpDbUYB" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"import influencer\n", | ||
"influencer.__version__" | ||
], | ||
"metadata": { | ||
"id": "QzAd2MnIbnqB" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"!pip install --upgrade jax jaxlib" | ||
], | ||
"metadata": { | ||
"id": "4017MOi1o0UU" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"from influencer.centrality import hits as npHITS\n", | ||
"from influencer.torch_centrality import hits as torchHITS" | ||
], | ||
"metadata": { | ||
"id": "JcdonChabqGi" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"torch.cuda.is_available()" | ||
], | ||
"metadata": { | ||
"id": "TQe7eU-pUXcU" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"# lazy_cerntrality version\n", | ||
"\n", | ||
"import jax.numpy as jnp\n", | ||
"from jax import jit\n", | ||
"\n", | ||
"def jhits(adjMatrix, p: int = 100):\n", | ||
" n = adjMatrix.shape[0]\n", | ||
" \n", | ||
" a = jnp.ones([1,n])\n", | ||
" h = jnp.ones([1,n])\n", | ||
" \n", | ||
" pa=a\n", | ||
" \n", | ||
" authority = {}\n", | ||
" hub = {}\n", | ||
" \n", | ||
" for k in range(1,p):\n", | ||
" h1 = jnp.dot(adjMatrix, pa.T)/jnp.linalg.norm(jnp.dot(adjMatrix, pa.T))\n", | ||
" a1 = jnp.dot(adjMatrix.T, h1)/jnp.linalg.norm(jnp.dot(adjMatrix.T , h1))\n", | ||
" \n", | ||
" h = jnp.vstack((h,jnp.dot(adjMatrix, a[k-1,:].T)/jnp.linalg.norm(jnp.dot(adjMatrix, a[k-1,:].T))))\n", | ||
" a = jnp.vstack((a,jnp.dot(adjMatrix.T, h[k,:].T)/jnp.linalg.norm(jnp.dot(adjMatrix.T, h[k,:].T))))\n", | ||
" \n", | ||
" pa = a1.T\n", | ||
" \n", | ||
" for i in range(n):\n", | ||
" authority[str(i)] = a[-1,i]\n", | ||
" hub[str(i)] = h[-1,i]\n", | ||
" \n", | ||
" return hub, authority, h, a" | ||
], | ||
"metadata": { | ||
"id": "MfiQGaGVo1lL" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"jit_jhits = jit(jhits)" | ||
], | ||
"metadata": { | ||
"id": "RI6BjpI6o1ZL" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"import time" | ||
], | ||
"metadata": { | ||
"id": "DLRt_OOEUGAP" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"np.random.seed(42)\n", | ||
"\n", | ||
"num_nodes = [x for x in range(500,15000, 500)]\n", | ||
"time_np = []\n", | ||
"time_torch = []\n", | ||
"time_torch_cpu = []\n", | ||
"time_jnp = []" | ||
], | ||
"metadata": { | ||
"id": "eaDzCz8cUGk9" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"for N in num_nodes:\n", | ||
" adjM = np.random.rand(N, N)\n", | ||
" adjM[adjM>0.5]=1\n", | ||
" adjM[adjM<=0.5]=0\n", | ||
" start_time1 = time.time()\n", | ||
" _, _,_,_ = npHITS(adjM, p=10)\n", | ||
" exe_time1 = time.time() - start_time1\n", | ||
" MT = torch.from_numpy(adjM).float().to(0)\n", | ||
" start_time2 = time.time()\n", | ||
" _,_,_,_ = torchHITS(MT, p=10)\n", | ||
" exe_time2 = time.time() - start_time2\n", | ||
" MT_cpu = torch.from_numpy(adjM).float()\n", | ||
" start_time3 = time.time()\n", | ||
" _,_,_,_ = torchHITS(MT_cpu, p=10, device='cpu')\n", | ||
" exe_time3 = time.time() - start_time3\n", | ||
" start_time4 = time.time()\n", | ||
" _, _,_,_ = jhits(adjM, p=10)\n", | ||
" exe_time4 = time.time() - start_time4\n", | ||
" time_np.append(exe_time1)\n", | ||
" time_torch.append(exe_time2)\n", | ||
" time_torch_cpu.append(exe_time3)\n", | ||
" time_jnp.append(exe_time4)" | ||
], | ||
"metadata": { | ||
"id": "98GaRZ5QmyYP" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"import matplotlib.pyplot as plt" | ||
], | ||
"metadata": { | ||
"id": "M2fXTQ2UcK0-" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"plt.figure(figsize=(18,10))\n", | ||
"plt.plot(num_nodes,time_np, 'bo')\n", | ||
"plt.plot(num_nodes,time_torch, 'ro')\n", | ||
"plt.plot(num_nodes,time_torch_cpu, 'go')\n", | ||
"plt.plot(num_nodes,time_jnp, 'ko')\n", | ||
"plt.xlabel(\"nodes\")\n", | ||
"plt.ylabel(\"seconds\")\n", | ||
"plt.title(\"HITS algorithm execution time\")\n", | ||
"plt.legend([\"numpy\", \"torch\", \"torch_CPU\", \"JAX\"])\n", | ||
"plt.show()" | ||
], | ||
"metadata": { | ||
"id": "fPsHmIivcMMF" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"plt.figure(figsize=(18,10))\n", | ||
"plt.plot(num_nodes,time_np, 'bo')\n", | ||
"plt.plot(num_nodes,time_torch, 'ro')\n", | ||
"plt.plot(num_nodes,time_torch_cpu, 'go')\n", | ||
"plt.xlabel(\"nodes\")\n", | ||
"plt.ylabel(\"seconds\")\n", | ||
"plt.title(\"HITS algorithm execution time\")\n", | ||
"plt.legend([\"numpy\", \"torch\", \"torch_CPU\"])\n", | ||
"plt.show()" | ||
], | ||
"metadata": { | ||
"id": "WsiYMTzS_NgL" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
} | ||
] | ||
} |