-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
3128d19
commit d580ab8
Showing
3 changed files
with
204 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
99 changes: 99 additions & 0 deletions
99
inst/poped/ex.1.b.PK.1.comp.oral.md.re-parameterize.babelmixr2.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
## using libary models and reparameterizing the problen to KA, KE and V | ||
## optimization of dose and dose interval | ||
|
||
library(babelmixr2) | ||
|
||
library(PopED) | ||
|
||
f <- function() { | ||
ini({ | ||
tV <- 72.8 | ||
tKa <- 0.25 | ||
tKe <- 3.75/72.8 | ||
tFavail <- fix(0.9) | ||
|
||
eta.v ~ 0.09 | ||
eta.ka ~ 0.09 | ||
eta.ke ~ 0.25^2 | ||
|
||
prop.sd <- fix(sqrt(0.04)) | ||
add.sd <- fix(sqrt(5e-6)) | ||
}) | ||
model({ | ||
V <- tV*exp(eta.v) | ||
KA <- tKa*exp(eta.ka) | ||
KE <- tKe*exp(eta.ke) | ||
Favail <- tFavail | ||
N <- floor(time/TAU)+1 | ||
y <- (DOSE*Favail/V)*(KA/(KA - KE)) * | ||
(exp(-KE * (time - (N - 1) * TAU)) * (1 - exp(-N * KE * TAU))/(1 - exp(-KE * TAU)) - | ||
exp(-KA * (time - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU))) | ||
|
||
y ~ prop(prop.sd) + add(add.sd) | ||
}) | ||
} | ||
|
||
# minxt, maxxt | ||
e <- et(list(c(0, 10), | ||
c(0, 10), | ||
c(0, 10), | ||
c(240, 248), | ||
c(240, 248))) %>% | ||
as.data.frame() | ||
|
||
#xt | ||
e$time <- c(1,2,8,240,245) | ||
|
||
|
||
babel.db <- nlmixr2(f, e, "poped", | ||
popedControl(groupsize=20, | ||
bUseGrouped_xt=TRUE, | ||
a=list(c(DOSE=20,TAU=24), | ||
c(DOSE=40, TAU=24)), | ||
maxa=c(DOSE=200,TAU=24), | ||
mina=c(DOSE=0,TAU=24))) | ||
|
||
|
||
## create plot of model without variability | ||
plot_model_prediction(babel.db) | ||
|
||
## create plot of model with variability | ||
plot_model_prediction(babel.db,IPRED=T,DV=T,separate.groups=T) | ||
|
||
## evaluate initial design | ||
evaluate_design(babel.db) | ||
|
||
shrinkage(babel.db) | ||
|
||
# Optimization of sample times | ||
output <- poped_optim(babel.db, opt_xt =TRUE, parallel=TRUE) | ||
|
||
# Evaluate optimization results | ||
summary(output) | ||
|
||
get_rse(output$FIM,output$poped.db) | ||
|
||
plot_model_prediction(output$poped.db) | ||
|
||
# Optimization of sample times, doses and dose intervals | ||
output_2 <- poped_optim(output$poped.db, opt_xt =TRUE, opt_a = TRUE, parallel = TRUE) | ||
|
||
summary(output_2) | ||
get_rse(output_2$FIM,output_2$poped.db) | ||
plot_model_prediction(output_2$poped.db) | ||
|
||
# Optimization of sample times with only integer time points in design space | ||
# faster than continuous optimization in this case | ||
babel.db.discrete <- create.poped.database(babel.db,discrete_xt = list(0:248)) | ||
|
||
output_discrete <- poped_optim(babel.db.discrete, opt_xt=T, parallel = TRUE) | ||
|
||
summary(output_discrete) | ||
|
||
get_rse(output_discrete$FIM,output_discrete$poped.db) | ||
|
||
plot_model_prediction(output_discrete$poped.db) | ||
|
||
|
||
# Efficiency of sampling windows | ||
plot_efficiency_of_windows(output_discrete$poped.db, xt_windows=1) |
102 changes: 102 additions & 0 deletions
102
inst/poped/ex.1.c.PK.1.comp.oral.md.ODE.compiled.babelmixr2.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
library(babelmixr2) | ||
library(PopED) | ||
|
||
|
||
## define the ODE | ||
f <- function() { | ||
ini({ | ||
tV <- 72.8 | ||
tKa <- 0.25 | ||
tCl <- 3.75 | ||
tF <- fix(0.9) | ||
|
||
eta.v ~ 0.09 | ||
eta.ka ~ 0.09 | ||
eta.cl ~0.25^2 | ||
|
||
prop.sd <- fix(sqrt(0.04)) | ||
add.sd <- fix(sqrt(5e-6)) | ||
|
||
}) | ||
model({ | ||
V<-tV*exp(eta.v) | ||
KA<-tKa*exp(eta.ka) | ||
CL<-tCl*exp(eta.cl) | ||
Favail <- tF | ||
d/dt(depot) <- -KA*depot | ||
d/dt(central) <- KA*depot - (CL/V)*central | ||
f(depot) <- Favail*DOSE | ||
y <- central/V | ||
y ~ prop(prop.sd) + add(add.sd) | ||
}) | ||
} | ||
|
||
# minxt, maxxt | ||
e <- et(list(c(0, 10), | ||
c(0, 10), | ||
c(0, 10), | ||
c(240, 248), | ||
c(240, 248))) %>% | ||
et(amt=1000, ii=24, until=248,cmt="depot") %>% | ||
as.data.frame() | ||
|
||
#xt | ||
e$time <- c(0, 1,2,8,240,245) | ||
|
||
|
||
babel.db <- nlmixr2(f, e, "poped", | ||
popedControl(groupsize=20, | ||
bUseGrouped_xt=TRUE, | ||
a=list(c(DOSE=20,TAU=24), | ||
c(DOSE=40, TAU=24)), | ||
maxa=c(DOSE=200,TAU=24), | ||
mina=c(DOSE=0,TAU=24))) | ||
|
||
## create plot of model without variability | ||
plot_model_prediction(babel.db, model_num_points = 300) | ||
|
||
## create plot of model with variability | ||
plot_model_prediction(babel.db, IPRED=T, DV=T, separate.groups=T, model_num_points = 300) | ||
|
||
## evaluate initial design | ||
evaluate_design(babel.db) | ||
|
||
shrinkage(babel.db) | ||
|
||
# Optimization of sample times | ||
output <- poped_optim(babel.db, opt_xt =TRUE) | ||
|
||
# Evaluate optimization results | ||
summary(output) | ||
|
||
get_rse(output$FIM,output$poped.db) | ||
|
||
plot_model_prediction(output$poped.db) | ||
|
||
|
||
# Optimization of sample times and doses | ||
output_2 <- poped_optim(output$poped.db, opt_xt =TRUE, opt_a = TRUE) | ||
|
||
summary(output_2) | ||
|
||
get_rse(output_2$FIM,output_2$poped.db) | ||
|
||
plot_model_prediction(output_2$poped.db) | ||
|
||
|
||
# Optimization of sample times with only integer time points in design space | ||
# faster than continuous optimization in this case | ||
babel.db.discrete <- create.poped.database(babel.db,discrete_xt = list(0:248)) | ||
|
||
output_discrete <- poped_optim(babel.db.discrete, opt_xt=T) | ||
|
||
|
||
summary(output_discrete) | ||
|
||
get_rse(output_discrete$FIM,output_discrete$poped.db) | ||
|
||
plot_model_prediction(output_discrete$poped.db) | ||
|
||
|
||
# Efficiency of sampling windows | ||
plot_efficiency_of_windows(output_discrete$poped.db, xt_windows=1) |