Releases: nok/sklearn-porter
Releases · nok/sklearn-porter
v0.7.0-v0.7.2
0.7.1 and 0.7.2
These patches solve build problems in version 0.7.0
.
Fixed
- Fix installation issues with the centralised meta information and the build process
- Fix missed package and add
six
to therequirements.txt
file
0.7.0
This is a minor update before the next major release 1.0.0
.
Fixed
Added
- Add Python 3.7 with Xenial to CI for testing
- Add PyTest for extended testing (see pytest.ini)
- Add useful Makefile tasks with dependency handling (see Makefile):
install.environment
to install aconda
environmentinstall.requirements
to install allpip
requirementsmake link
to installporter
(cli) to the command linemake open.examples
to start a local jupyter servermake stop.examples
to stop the started jupyter servermake test
to run all unittests in testsmake lint
to run pylint over sklearn_portermake jupytext
to generate the notebooks from Python sources
Changed
- Core:
- Merge all meta information to
sklearn_porter/package.json
- Merge all meta information to
- CI and requirements:
- Remove
conda
from CI - Clear and split
pip
requirements into three parts:- requirements.txt for library requirements
- requirements.examples.txt for examples requirements
- requirements.development.txt for development requirements
- Update extended requriements (e.g. GCC, PHP, ...)
- Remove
- Utils:
- Refactor class sklearn_porter.utils.Shell to remove redundancy
- Refactor CLI with a bunch of improvements (grouped arguments, use of console scripts)
- Testing:
- Change web server port for testing from
8080
to8713
(because of collusion with the default port of Jenkins) - Remove class tests.utils.DependencyChecker, instead use sklearn_porter.utils.Environment
- Remove class tests.utils.Timer, instead use
--durations=0
of PyTest
- Change web server port for testing from
v0.6.2
v0.6.1
v0.6.0
Added
- Add changelog.md for the next releases (#ee44ac9).
- Add changelog.md and readme.md to each build of a release (#ee44ac9).
- Add for each target programming language a new new command-line argument (e.g.
--java
,--c
or--go
) (#41b93a0). - Add argument
--class_name
and--method_name
to define the class and method name in the final output directly (#6f2a1d9). - Add pipe functionality and the related command-line argument (
--pipe
or-p
) (#8a57746). - Add
--export
argument to dump the model data and use the specific templates (#0669645). - Add
--checksum
argument to append the computed md5 checksum at the end of the dumped model data file (#cd12827). - Add
--data
argument to kust export the model data (#fad499a). - Add test class
Go
intests/language/Go.py
to test all implementations for the target programming language Go (#1d0b5d6). - Add Go compiling (
go build -o brain brain.go
) and execution (./brain
) command (#5d24f57). - Add initial Web Workers features in JavaScript templates (#87d3236) and a create seperate example (#187efac).
- Add the feature to read the estimator from a used Pipeline (#b92edff, issue: #18).
- Add a new class argument (
num_format=lambda x: str(x)
) to change the default representation of floating-point values (#7f9fac8). - Use estimator name as default class name (e.g.
MLPClasifier
,KNeighborsClassifier
,SVC
, ...) (#710a854). - Add new estimator:
- Add support to export and import model data:
- Java:
svm.SVC
notebook (#e753252)svm.NuSVC
notebook (#e753252)svm.LinearSVC
notebook (#562ed8c)ensemble.AdaBoostClassifier
notebook (#79d846f)ensemble.RandomForestClassifier
notebook (#9979a94)ensemble.ExtraTreesClassifier
notebook (#9979a94)tree.DecisionTreeClassifier
notebook (#9979a94)neighbors.KNeighborsClassifier
notebook (#1b81d3f)naive_bayes.GaussianNB
notebook (#b68c5df)naive_bayes.BernoulliNB
notebook (#7eae57d)neural_network.MLPClassifier
notebook (#b988f57, #d8ff774)
- JavaScript:
- Java:
- Add new recipes:
- JavaScript:
Changed
- Use human-readable placeholders (e.g.
'{class_name}.{method_name}'
) instead of index-based placeholders (e.g.'{0}.{1}'
) in all main templates of all estimators (#de02795). - Change the order of optional and required arguments in the
--help
text (#54d9973). - Change the default representation of floating-point values from
repr(x)
tostr(x)
(#7f9fac8). - Use the method name
integrity_score(X)
instead ofpredict_test(X)
to avoid misconceptions for the integrity test (#715ec7d). - Separate the model data from the algorithm:
v0.5.2
v0.5.1
v0.5.0
Bugfix:
- Fix voting mechanism in sklearn.svm.SVC (commit)
Algorithms:
- Add first regressor: sklearn.neural_network.MLPRegressor ✨
- Add binary classification to:
- Add JavaScript syntax for sklearn.naive_bayes.GaussianNB
Changes:
- Refactor tests and add new generic tests
- Add
breast_cancer
,digits
andiris
dataset to all classifier tests - Add new environment variables
N_RANDOM_FEATURE_SETS
andN_EXISTING_FEATURE_SETS