Skip to content

Commit

Permalink
LinearAlgebra.det improvements
Browse files Browse the repository at this point in the history
Performance improvements, support for more types.

Still broken for `LinearAlgebra.Symmetric` polynomial matrices,
producing a `MethodError` because of a missing `oneunit` method. This,
however, seems like a separate matter that would better be addressed
by a separate pull request.

Performance comparison:

```julia-repl
julia> versioninfo()
Julia Version 1.11.0-DEV.972
Commit 9884e447e79 (2023-11-23 16:16 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 8 × AMD Ryzen 3 5300U with Radeon Graphics
  WORD_SIZE: 64
  LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
  Threads: 11 on 8 virtual cores

julia> using LinearAlgebra, DynamicPolynomials

julia> function f(n)
         @PolyVar a b c d e
         diagm(
          -2 => fill(a, n - 2), -1 => fill(b, n - 1), 0 => fill(c, n),
           2 => fill(e, n - 2),  1 => fill(d, n - 1),
         )
       end
f (generic function with 1 method)

julia> const m15 = f(15);

julia> const m16 = f(16);

julia> @time det(m15);
  1.945673 seconds (45.22 M allocations: 2.261 GiB, 20.60% gc time, 4.02% compilation time)

julia> @time det(m15);
  1.991062 seconds (45.22 M allocations: 2.261 GiB, 23.74% gc time)

julia> @time det(m16);
  4.596664 seconds (106.67 M allocations: 5.324 GiB, 22.65% gc time)

julia> @time det(m16);
  4.648503 seconds (106.67 M allocations: 5.324 GiB, 22.66% gc time)
```

The above REPL session is with this commit applied, and with all other
recent PRs of mine applied, to MultivariatePolynomials.jl,
DynamicPolynomials.jl, and MutableArithmetics.jl. The same computation
with MultivariatePolynomials v0.5.3 ran for multiple minutes before I
decided to just kill it.

Depends on JuliaAlgebra#285.

Fixes JuliaAlgebra#281.
  • Loading branch information
nsajko committed Nov 27, 2023
1 parent fcb1b29 commit 1d31b07
Show file tree
Hide file tree
Showing 2 changed files with 79 additions and 13 deletions.
79 changes: 69 additions & 10 deletions src/det.jl
Original file line number Diff line number Diff line change
@@ -1,13 +1,72 @@
function LinearAlgebra.det(M::Matrix{<:AbstractPolynomialLike})
m = size(M)[1]
if m > 2
return sum(
(-1)^(i - 1) * M[i, 1] * LinearAlgebra.det(M[1:end.!=i, 2:end]) for
i in 1:m
)
elseif m == 2
return M[1, 1] * M[2, 2] - M[2, 1] * M[1, 2]
# Scalar determinant, used for recursive computation of the determinant
LinearAlgebra.det(p::AbstractPolynomialLike{<:Number}) = p

# Matrix determinant by cofactor expansion, adapted from
# `LinearAlgebraX.cofactor_det`.
function det_impl(A::AbstractMatrix{T}) where {T}
get_elem = let A = A
(i, j) -> LinearAlgebra.det(A[i, j])
end
r = first(size(A))
if 1 < r
total = LinearAlgebra.det(zero(T))
for i in Base.OneTo(r)
a = get_elem(i, 1)
if !iszero(a)
ii = Base.OneTo(r) .!= i
jj = 2:r
B = A[ii, jj]
x = det_impl(B)
x = MA.operate!!(*, x, a)
if iseven(i)
x = MA.operate!!(-, x)
end
total = MA.operate!!(+, total, x)
end
end
total
elseif isone(r)
MA.copy_if_mutable(get_elem(1, 1))
else
error("unexpected")
end
end

collect_if_not_already_matrix(m::Matrix) = m
collect_if_not_already_matrix(m::AbstractMatrix) = collect(m)

function det_impl_outer(m::AbstractMatrix{T}) where {T}
if 0 < LinearAlgebra.checksquare(m)
det_impl(collect_if_not_already_matrix(m))
else
return M[1, 1]
LinearAlgebra.det(one(T))
end
end

# Determinants of narrow integer type: `LinearAlgebra` seems to
# promote these to `Float64` to prevent them from overflowing. We
# instead promote to `BigInt` to keep things exact. In the case of
# `Bool` we also need to promote for type stability.

const NarrowIntegerTypes =
Union{Bool,UInt8,Int8,UInt16,Int16,UInt32,Int32,UInt64,Int64,UInt128,Int128}

const NarrowIntegerPolynomialLike =
AbstractPolynomialLike{T} where {T<:NarrowIntegerTypes}

promote_if_narrow(m::AbstractMatrix{<:AbstractPolynomialLike}) = m

function promote_if_narrow(m::AbstractMatrix{<:NarrowIntegerPolynomialLike})
return map((p -> polynomial(p, BigInt)), m)
end

# For type stability, we want to promote termlikes to polynomiallikes
# before attempting to calculate the determinant.
promote_if_termlike(m::AbstractMatrix{<:AbstractPolynomialLike}) = m
promote_if_termlike(m::AbstractMatrix{<:AbstractTermLike}) = map(polynomial, m)

promote_if_necessary(m) = promote_if_termlike(promote_if_narrow(m))

function LinearAlgebra.det(m::AbstractMatrix{<:AbstractPolynomialLike})
return det_impl_outer(promote_if_necessary(m))
end
13 changes: 10 additions & 3 deletions test/det.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,14 @@
@testset "Det" begin
Mod.@polyvar x y

@test det([x 1; y 1]) == x - y
@test det([x 1; x 1]) == 0
@test det([x 1 1 1; x y 1 2; 0 0 0 1; x 0 y 0]) == -x * y^2 + 2 * x * y - x
@testset "zero-one $T" for T in (Bool, Int, Float64, BigInt, BigFloat)
z = zero(T)
o = one(T)
@test (@inferred det([x o; y o])) == x - y
@test (@inferred det([x o; x o])) == 0
@test (@inferred det([x+y y; z y])) == (x + y)*y
end

@test (@inferred det([x 1 1 1; x y 1 2; 0 0 0 1; x 0 y 0])) ==
-x * y^2 + 2 * x * y - x
end

0 comments on commit 1d31b07

Please sign in to comment.