forked from SciML/ODE.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Radau II A Solver #3
Open
obiajulu
wants to merge
28
commits into
master
Choose a base branch
from
radau
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 22 commits
Commits
Show all changes
28 commits
Select commit
Hold shift + click to select a range
1029f09
Add radau solver
YingboMa adb4857
Small changes
YingboMa 08fdd57
optional order
obiajulu 9627da7
updated done()
obiajulu 8db6176
change unwrap to unpack
obiajulu ace77bf
added setting up state and trialstep function
obiajulu 68567c7
added types to radau state
obiajulu 05b0e33
outline comments for trialstep
obiajulu 60b5df6
add basic errorcontrol! function
YingboMa 23a3d09
fix conflict
obiajulu 4ca32e3
Fix the conflicts
YingboMa 7ab6965
return structure for errorcontrol
obiajulu 5882320
added framework for tableau
obiajulu 8ac9f13
Add ordercontrol
YingboMa a8e155e
more modifications to tableau
obiajulu 3283b8e
more organization in structure
obiajulu fc04524
Add using Polynomials
YingboMa a76a14f
Add b in raduaTable
YingboMa 361831e
removed conflict
obiajulu 41f4f5f
Add prototype of constRadauTableau function
YingboMa 333d62a
Fix bugs and optimize constRadauTableau function
YingboMa db9a8f3
further progress in trialstep
obiajulu 4b5f62d
Add some documents
YingboMa 9fdeed5
Improve constRadauTableau() function and add bt_radau5 table
YingboMa a846d88
Netwon iteration framework working
obiajulu 0a39b32
radau state working, tableau as well. Also done() and constRadauTable…
obiajulu b8a898c
a working, though incorrect, Netwon iteration
obiajulu 8b503c8
Add .gitignore and avoid deprecated warnings
YingboMa File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,351 @@ | ||
#= | ||
(1) done() | ||
(2) trialstep!() | ||
(3) errorcontol!() | ||
(4) odercontrol!() | ||
(5) rollback!() | ||
(6) status() | ||
=# | ||
|
||
########################################### | ||
# Tableaus for implicit Runge-Kutta methods | ||
########################################### | ||
using Polynomials | ||
using ForwardDiff | ||
|
||
immutable TableauRKImplicit{Name, S, T} <: Tableau{Name, S, T} | ||
order::Integer # the order of the method | ||
a::Matrix{T} | ||
# one or several row vectors. First row is used for the step, | ||
# second for error calc. | ||
b::Matrix{T} | ||
c::Vector{T} | ||
function TableauRKImplicit(order,a,b,c) | ||
@assert isa(S,Integer) | ||
@assert isa(Name,Symbol) | ||
@assert c[1]==0 | ||
@assert istril(a) | ||
@assert S==length(c)==size(a,1)==size(a,2)==size(b,2) | ||
@assert size(b,1)==length(order) | ||
@assert norm(sum(a,2)-c'',Inf)<1e-10 # consistency. | ||
new(order,a,b,c) | ||
end | ||
end | ||
|
||
function TableauRKImplicit{T}(name::Symbol, order::Integer, | ||
a::Matrix{T}, b::Matrix{T}, c::Vector{T}) | ||
TableauRKImplicit{name,length(c),T}(order, a, b, c) | ||
end | ||
function TableauRKImplicit(name::Symbol, order::Integer, T::Type, | ||
a::Matrix, b::Matrix, c::Vector) | ||
TableauRKImplicit{name,length(c),T}(order, convert(Matrix{T},a), | ||
convert(Matrix{T},b), convert(Vector{T},c) ) | ||
end | ||
|
||
## Tableaus for implicit RK methods | ||
const bt_radau3 = TableauRKImplicit(:radau3,3, Rational{Int64}, | ||
[5//12 -1//12 | ||
3//4 1//4], | ||
[3//4, 1//4]', | ||
[1//3, 1]) | ||
|
||
const bt_radau5 = TableauRKImplicit(:radau5,5, Rational{Int64}, | ||
[11/45 - 4*sqrt(6)/360 37/225 - 169*sqrt(6)/1800 -2/225 + sqrt(6)/75 | ||
11/45 - 4*sqrt(6)/360 37/225 - 169*sqrt(6)/1800 -2/225 + sqrt(6)/75 | ||
11/45 - 4*sqrt(6)/360 37/225 - 169*sqrt(6)/1800 -2/225 + sqrt(6)/75]', | ||
[2//5- sqrt(6)/10, 1]) | ||
|
||
const bt_radau9 = TableauRKImplicit(:radau9,9, Rational{Int64}, | ||
[0 0 | ||
1 0], | ||
[1//2, 1//2]', | ||
[0, 1]) | ||
|
||
|
||
########################################### | ||
# State for Radau Solver | ||
########################################### | ||
type RadauState{T,Y} | ||
h::T # (proposed) next time step | ||
|
||
t::T # current time | ||
y::Y # current solution | ||
dy::Y # current derivative | ||
|
||
tpre::T # time t-1 | ||
ypre::Y # solution at t-1 | ||
dypre::Y # derivative at t-1 | ||
|
||
step::Int # current step number | ||
finished::Bool # true if last step was taken | ||
|
||
btab::TableauRKImplicit # tableau according to stage number | ||
|
||
# work arrays | ||
end | ||
|
||
########################################### | ||
# Radau Solver | ||
########################################### | ||
function ode_radau(f, y0, tspan, stageNum ::Integer = 5) | ||
# Set up | ||
T = eltype(tspan) | ||
Y = typeof(y0) | ||
EY = eltype(Y) | ||
N = length(tsteps) | ||
dof = length(y0) | ||
h = hinit | ||
t = ode.tspan[1] | ||
y = deepcopy(y0) | ||
dy = f(t, y) | ||
# get right tableau for stage number | ||
if stageNum ==3 | ||
btab = bt_radau3 | ||
elseif stageNum ==5 | ||
btab = bt_radau5 | ||
elseif stageNum == 9 | ||
btab = bt_radau9 | ||
else | ||
btab = constRadauTableau(stageNum) | ||
end | ||
|
||
## previous data set to null to begin | ||
tpre = NaN | ||
ypre = zeros(y0) | ||
dypre = zeros(y0) | ||
step = 1 | ||
stageNum = stageNum | ||
finished = false | ||
|
||
|
||
## intialize state | ||
st = RadauState{T,Y}(h, | ||
t, y, dy, | ||
tpre, ypre, dypre, | ||
step, finished, | ||
btab) | ||
|
||
# Time stepping loop | ||
while !done() | ||
stats = trialstep!(st) | ||
err, stats, st = errorcontrol!(st) # (1) adaptive stepsize (2) error | ||
if err < 1 | ||
stats, st = ordercontrol!() | ||
accept = true | ||
else | ||
rollback!() | ||
end | ||
|
||
return = status() | ||
end | ||
end | ||
|
||
########################################### | ||
# iterator like helper functions | ||
########################################### | ||
|
||
function done(st) | ||
@unpack st: h, t, tfinal | ||
if h < minstep || t = tfinal | ||
return true | ||
else | ||
return false | ||
end | ||
end | ||
|
||
"trial step for ODE with mass matrix" | ||
function trialstep!(st) | ||
@unpack st: h, t,y, tfinal | ||
|
||
|
||
# Calculate simplified Jacobian if My' = f(t,y) | ||
# _ _ | ||
# |M - h*a[11]*h*f(tn,yn) ... -h*a[1s]*f(tn,yn) | | ||
# G= | ⋮ ⋱ ⋮ | | ||
# | - h*a[1s]*h*f(tn,yn) ... M-h*a[ss]*f(tn,yn) | | ||
# |_ _| | ||
# | ||
g(z) = f(t,z) | ||
J = ForwardDiff.jacobian(g, y) | ||
I = eye(stageNum,stageNum) | ||
|
||
#AoplusJ = [btab.a[i,j]*J for i=1:stageNum, j=1:stageNum] | ||
AoplusJ=zeros(stageNum*dof,stageNum*dof) | ||
for i=1:stageNum | ||
for j = 1:stageNum | ||
for l = 1:dof | ||
for k = 1:dof | ||
AoplusJ[(i-1)*stageNum+l,(j-1)*stageNum+k] =btab.a[i,j]*J[l,k] | ||
end | ||
end | ||
end | ||
end | ||
|
||
AoplusI = [btab.a[i,j]*I for i=1:stageNum, j=1:stageNum] | ||
AoplusI2=zeros(stageNum*dof,stageNum*dof) | ||
for i=1:stageNum | ||
for j = 1:stageNum | ||
for l = 1:dof | ||
for k = 1:dof | ||
AoplusI2[(i-1)*stageNum+l,(j-1)*stageNum+k] =btab.a[i,j]*I[l,k] | ||
end | ||
end | ||
end | ||
end | ||
|
||
#IoplusM = [I[i,j]*M for i=1:stageNum, j=1:stageNum] | ||
IoplusM=zeros(stageNum*dof,stageNum*dof) | ||
for i=1:stageNum | ||
for j = 1:stageNum | ||
for l = 1:dof | ||
for k = 1:dof | ||
IoplusM[(i-1)*stageNum+l,(j-1)*stageNum+k] =I[i,j]*M[l,k] | ||
end | ||
end | ||
end | ||
end | ||
|
||
G = IoplusM-h*AoplusJ | ||
Ginv = inv(G) | ||
|
||
# Use Netwon interation | ||
# | ||
# ⃗z^(k+1) = ⃗z ^ (k) - Δ⃗z^(k) | ||
#TODO: use the transformation T^(-1)A^(-1)T = Λ, W^k = (T^-1 ⊕ I)Z^k | ||
## initial variables iteration | ||
#TODO: use better initial values for zpre | ||
#w = hnew/hpre | ||
#zpre = q(w)+ypre-y | ||
zpre = zeros(dof) | ||
Δzpre | ||
κ | ||
|
||
iterate = true | ||
count = 0 | ||
while iterate | ||
Δz = reshape(Ginv*[(-zpre + h*AoplusI2*F(f,z,y,t,c,h))...],dof,stageNum) | ||
z = zpre + Δz | ||
|
||
# Stop condition for the Netwon iteration | ||
if (count >=1) | ||
Θ = norm(Δz)/norm(Δzpre) | ||
η = Θ/(1-Θ) | ||
if η*norm(Δz) <= κ*min(reltol,abstol) | ||
iterate = false | ||
break | ||
end | ||
end | ||
|
||
zpre = z | ||
Δzpre = Δz | ||
|
||
count+=1 | ||
end | ||
|
||
# Once Netwon method converges after some m steps, estimated next step size | ||
# | ||
# y = ypre + h ∑b_i*k_i^{m} | ||
# | ||
|
||
d = b*inv(A) | ||
ynext = ypre | ||
for i = 1 : stageNum | ||
ynext += z[i]*d[i] | ||
end | ||
end | ||
|
||
function errorcontrol!(st) | ||
@unpack st:M, h, A, J, tpre, ypre, b̂, b, c, g, order_number, fac | ||
γ0 = filter(λ -> imag(λ)==0, eig(inv(A))) | ||
|
||
for i = 1:order_number | ||
sum_part += (b̂[i] - b[i]) * h *f(xpre + c[i] * h, g[i]) | ||
end | ||
|
||
yhat_y = γ0 * h * f(tpre, ypre) + sum_part | ||
err = norm( inv(M - h * λ * J) * (yhat_y) ) | ||
|
||
hnew = fac * h * err_norm^(-1/4) | ||
|
||
# Update state | ||
st.hnew = hnew | ||
|
||
return err, Nothing, st | ||
end | ||
|
||
function ordercontrol!(st) | ||
@unpack st:W, step, order | ||
|
||
if step < 10 | ||
# update state | ||
st.order = 5 | ||
|
||
else | ||
θk = norm(W[ ]) / norm(W[ ]) | ||
θk_1 = norm(W[ ]) / norm(W[ ]) | ||
|
||
Φ_k = √(θk * θk_1) | ||
end | ||
|
||
end | ||
########################################### | ||
# Other help functions | ||
########################################### | ||
function constRadauTableau(stageNum) | ||
# Calculate c_i, which are the zeros of | ||
# s-1 | ||
# d s-1 s | ||
# --- (x * (x-1) ) | ||
# s-1 | ||
# dx | ||
roots = Array(Float64, stageNum - 1) | ||
append!(roots, [1 for i= 1:stageNum]) | ||
poly = Polynomials.poly([roots;]) | ||
for i = 1 : stageNum-1 | ||
poly = Polynomials.polyder(poly) | ||
end | ||
C = Polynomials.roots(poly) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Polynomials package has been 3 years didn't update, and Polynomials package has serious performance and the returning type issues. Maybe need to rewrite this part. |
||
|
||
################# Calculate b_i ################# | ||
|
||
# Construct a matrix C_meta to calculate B | ||
C_meta = Array(Float64, stageNum, stageNum) | ||
for i = 1:stageNum | ||
C_meta[i, :] = C .^ (i - 1) | ||
end | ||
|
||
# Construct a matrix 1 / stageNum | ||
B_meta = Array(Float64, stageNum, 1) | ||
for i = 1:stageNum | ||
B_meta[i, 1] = 1 / i | ||
end | ||
|
||
# Calculate b_i | ||
C_big = inv( C_meta ) | ||
B = C_big * B_meta | ||
|
||
################# Calculate a_ij ################ | ||
|
||
# Construct matrix A | ||
A = Array(Float64, stageNum, stageNum) | ||
|
||
# Construct matrix A_meta | ||
A_meta = Array(Float64, stageNum, stageNum) | ||
for i = 1:stageNum | ||
for j = 1:stageNum | ||
A_meta[i,j] = B_meta[i] * C[j]^i | ||
end | ||
end | ||
|
||
# Calculate a_ij | ||
for i = 1:stageNum | ||
A[i,:] = C_big * A_meta[:,i] | ||
end | ||
|
||
return TableauRKImplicit(order, A, B, C) | ||
end | ||
|
||
" Calculates the array of derivative values between t and tnext" | ||
function F(f,z,y,t,c,h) | ||
return [f(t+c[i]*h, y+z[i]) for i=1:length(z)] | ||
end |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There is a function in Julia Base called "kron" which is Kronecker tensor product. Maybe this function is helpful to you.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes indeed, this is very very helpful!!! Saves me from having to implement tensor product myself. Thanks.